Home
Class 12
MATHS
Let (sin(theta-alpha))/("sin"(theta-beta...

Let `(sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))/("cos"(theta-beta))=c/d t h e n(a c+b d)/(a d+b c)=`

A

`cos(alpha-beta)`

B

`sin(alpha-beta)`

C

`cos(alpha+beta)`

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equations provided and manipulate them step by step. ### Step 1: Set up the equations We are given: \[ \frac{\sin(\theta - \alpha)}{\sin(\theta - \beta)} = \frac{a}{b} \] This implies: \[ a \cdot \sin(\theta - \beta) = b \cdot \sin(\theta - \alpha) \tag{1} \] Similarly, we have: \[ \frac{\cos(\theta - \alpha)}{\cos(\theta - \beta)} = \frac{c}{d} \] This implies: \[ c \cdot \cos(\theta - \beta) = d \cdot \cos(\theta - \alpha) \tag{2} \] ### Step 2: Express \( a, b, c, d \) in terms of \( k_1, k_2 \) From equations (1) and (2), we can express \( a \) and \( b \) in terms of a constant \( k_1 \) and \( c \) and \( d \) in terms of another constant \( k_2 \): \[ \frac{a}{\sin(\theta - \alpha)} = k_1 \quad \text{and} \quad \frac{b}{\sin(\theta - \beta)} = k_1 \] \[ \frac{c}{\cos(\theta - \alpha)} = k_2 \quad \text{and} \quad \frac{d}{\cos(\theta - \beta)} = k_2 \] ### Step 3: Substitute \( a, b, c, d \) Now substituting \( a, b, c, d \) into the expression we need to evaluate: \[ \frac{ac + bd}{ad + bc} \] Substituting: \[ = \frac{(k_1 \sin(\theta - \alpha))(k_2 \cos(\theta - \alpha)) + (k_1 \sin(\theta - \beta))(k_2 \cos(\theta - \beta))}{(k_1 \sin(\theta - \alpha))(k_2 \cos(\theta - \beta)) + (k_1 \sin(\theta - \beta))(k_2 \cos(\theta - \alpha))} \] ### Step 4: Factor out constants Factoring out \( k_1 k_2 \) from both the numerator and denominator: \[ = \frac{k_1 k_2 \left( \sin(\theta - \alpha) \cos(\theta - \alpha) + \sin(\theta - \beta) \cos(\theta - \beta) \right)}{k_1 k_2 \left( \sin(\theta - \alpha) \cos(\theta - \beta) + \sin(\theta - beta) \cos(\theta - alpha) \right)} \] This simplifies to: \[ = \frac{\sin(\theta - \alpha) \cos(\theta - \alpha) + \sin(\theta - \beta) \cos(\theta - \beta)}{\sin(\theta - \alpha) \cos(\theta - \beta) + \sin(\theta - \beta) \cos(\theta - \alpha)} \] ### Step 5: Apply trigonometric identities Using the identity \( \sin A \cos B + \sin B \cos A = \sin(A + B) \): - The numerator becomes: \[ \frac{1}{2} \left( \sin(2(\theta - \alpha)) + \sin(2(\theta - \beta)) \right) \] - The denominator becomes: \[ \sin(\theta - \alpha + \theta - \beta) = \sin(2\theta - (\alpha + \beta)) \] ### Step 6: Final simplification Thus, we have: \[ \frac{\frac{1}{2} \left( \sin(2\theta - 2\alpha) + \sin(2\theta - 2\beta) \right)}{\sin(2\theta - \alpha - \beta)} \] Using the sine addition formula: \[ = \frac{\sin(2\theta - 2\alpha) + \sin(2\theta - 2\beta)}{2 \sin(2\theta - \alpha - \beta)} \] ### Step 7: Conclusion After simplification, we find that: \[ \frac{ac + bd}{ad + bc} = \cos(\alpha - \beta) \] Thus, the final answer is: \[ \cos(\alpha - \beta) \]

To solve the given problem, we start with the equations provided and manipulate them step by step. ### Step 1: Set up the equations We are given: \[ \frac{\sin(\theta - \alpha)}{\sin(\theta - \beta)} = \frac{a}{b} \] This implies: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

If sin(theta+alpha)=aa n dsin(theta+beta)=b , prove that cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If sin(theta+alpha)=a, a n dsin(theta+beta)=b , prove that cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If alpha+beta+gamma= 2theta., then costheta+ cos(theta-alpha)+ cos(theta-beta)+cos(theta-gamma)

If alpha +beta + gamma = 2theta then costheta+ cos(theta-alpha)+cos(theta-beta)+ cos(theta-gamma)

If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c then prove (a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c then (a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. If "cot"(alpha+beta=0, then "sin"(alpha+2beta can be -sinalpha (b) si...

    Text Solution

    |

  2. In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2...

    Text Solution

    |

  3. Let (sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))...

    Text Solution

    |

  4. If A,B,C are angles of a triangle, then 2sinA/2cos e c B/2sinC/2-sinAc...

    Text Solution

    |

  5. If alt=3cosx+5sin(x-pi/6)lt=b for all x then (a , b) is (-sqrt(19),sqr...

    Text Solution

    |

  6. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  7. Let x=sin1^@ then find the value of the expression 1/(cos0^@cos1^@)+1/...

    Text Solution

    |

  8. If theta is eliminated from the equations x=a"cos"(theta-alpha) and y=...

    Text Solution

    |

  9. The minimum vertical distance between the graphs of y=2+s in xa n dy=c...

    Text Solution

    |

  10. If tan^2(pi-A)/4+tan^2(pi-B)/4+tan^2(pi-C)/4=1 , then A B C is equila...

    Text Solution

    |

  11. if (1+tanalpha)(1+tan4alpha) =2 where alpha in (0 , pi/16) then alpha...

    Text Solution

    |

  12. If cos28^0+sin28^0=k^3, t h e ncos17^0 is equal to (k^3)/(sqrt(2)) (b...

    Text Solution

    |

  13. Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the va...

    Text Solution

    |

  14. If y = (1 + tan A) (1 - tan B), where A -B=pi/4 then (y+ 1)^(y + 1) is...

    Text Solution

    |

  15. If (sinx)/(siny)=1/2,(cosx)/(cosy)=3/2 , where x , y , in (0,pi/2), th...

    Text Solution

    |

  16. If cot^2x=cot(x-y)(x-z),t h e ncot2x is equal to (w h e r ex!=pi/4) ....

    Text Solution

    |

  17. In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB si...

    Text Solution

    |

  18. Find the value of sin 27^(@)-cos27^(@)?

    Text Solution

    |

  19. If costheta1 2costheta2, then tan(theta(1-theta2))/2tan(theta1+theta2)...

    Text Solution

    |

  20. Let alpha and beta be such that pi<alpha-beta<3pi, If sinalpha+sinbeta...

    Text Solution

    |