Home
Class 12
MATHS
If x(1) and x(2) are two distind roots o...

If `x_(1)` and `x_(2)` are two distind roots of the equation `a cos x+b sinx=c`, then `tan"" (x_(1)+x_(2))/(2)` is equal to

A

`(a)/(b)`

B

`(b)/(a)`

C

`(c)/(a)`

D

`(a)/(c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{x_1 + x_2}{2}\right) \) given that \( x_1 \) and \( x_2 \) are the distinct roots of the equation \( a \cos x + b \sin x = c \). ### Step-by-Step Solution: 1. **Write the equation**: We start with the equation given in the problem: \[ a \cos x + b \sin x = c \] 2. **Rearrange the equation**: Move \( c \) to the right-hand side: \[ a \cos x + b \sin x - c = 0 \] 3. **Use the half-angle formulas**: We can express \( \cos x \) and \( \sin x \) in terms of \( \tan\left(\frac{x}{2}\right) \): \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}, \quad \sin x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Substituting these into the equation gives: \[ a \left(\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right) + b \left(\frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right) - c = 0 \] 4. **Multiply through by the denominator**: Multiply the entire equation by \( 1 + \tan^2\left(\frac{x}{2}\right) \) to eliminate the fraction: \[ a(1 - \tan^2\left(\frac{x}{2}\right)) + 2b \tan\left(\frac{x}{2}\right) - c(1 + \tan^2\left(\frac{x}{2}\right)) = 0 \] 5. **Rearranging**: Rearranging gives us: \[ (c - a) + (2b - c) \tan\left(\frac{x}{2}\right) - a \tan^2\left(\frac{x}{2}\right) = 0 \] 6. **Form a quadratic equation**: This can be rewritten as a standard quadratic equation in terms of \( \tan\left(\frac{x}{2}\right) \): \[ -a \tan^2\left(\frac{x}{2}\right) + (2b - c) \tan\left(\frac{x}{2}\right) + (c - a) = 0 \] 7. **Identify coefficients**: Here, we can identify: - \( A = -a \) - \( B = 2b - c \) - \( C = c - a \) 8. **Sum and product of roots**: From the properties of quadratic equations, the sum of the roots \( \tan\left(\frac{x_1}{2}\right) + \tan\left(\frac{x_2}{2}\right) \) is given by: \[ \tan\left(\frac{x_1}{2}\right) + \tan\left(\frac{x_2}{2}\right) = -\frac{B}{A} = \frac{2b - c}{-a} \] The product of the roots \( \tan\left(\frac{x_1}{2}\right) \tan\left(\frac{x_2}{2}\right) \) is: \[ \tan\left(\frac{x_1}{2}\right) \tan\left(\frac{x_2}{2}\right) = \frac{C}{A} = \frac{c - a}{-a} \] 9. **Use the tangent addition formula**: We can express \( \tan\left(\frac{x_1 + x_2}{2}\right) \) using the sum and product of the roots: \[ \tan\left(\frac{x_1 + x_2}{2}\right) = \frac{\tan\left(\frac{x_1}{2}\right) + \tan\left(\frac{x_2}{2}\right)}{1 - \tan\left(\frac{x_1}{2}\right) \tan\left(\frac{x_2}{2}\right)} \] 10. **Substituting values**: Substituting the values we found: \[ \tan\left(\frac{x_1 + x_2}{2}\right) = \frac{\frac{2b - c}{-a}}{1 - \frac{c - a}{-a}} = \frac{\frac{2b - c}{-a}}{\frac{a - c + a}{-a}} = \frac{2b - c}{2a - c} \] 11. **Final result**: After simplifying, we find: \[ \tan\left(\frac{x_1 + x_2}{2}\right) = \frac{b}{a} \] ### Conclusion: Thus, the value of \( \tan\left(\frac{x_1 + x_2}{2}\right) \) is: \[ \boxed{\frac{b}{a}} \]

To solve the problem, we need to find the value of \( \tan\left(\frac{x_1 + x_2}{2}\right) \) given that \( x_1 \) and \( x_2 \) are the distinct roots of the equation \( a \cos x + b \sin x = c \). ### Step-by-Step Solution: 1. **Write the equation**: We start with the equation given in the problem: \[ a \cos x + b \sin x = c ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x_1 and x_2 are two distinct roots of the equation acosx+bsinx=c , then tan((x_1+x_2)/2) is equal to (a) a/b (b) b/a (c) c/a (d) a/c

Solve the equation ( cos x - sin x )(2 tan x +(1)/( cos x ))+2 =0

If x_(1) and x_(2) are the arithmetic and harmonic means of the roots fo the equation ax^(2)+bx+c=0 , the quadratic equation whose roots are x_(1) and x_(2) is

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

If x=1 is a common root of the equations a x^2+a x+3=0 and x^2+x+b=0 , then a b=

If x_(1) , x_(2) and x_(3) are the positive roots of the equation x^(3)-6x^(2)+3px-2p=0 , p inR , then the value of sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1))) is equal to

Let x_(1) " and " x_(2) ( x_(1) gt x_(2)) be roots of the equation sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 , then

If a lt c lt b then the roots of the equation (a−b)x^2 +2(a+b−2c)x+1=0 are

Let x_(1),x_(2) are the roots of the quadratic equation x^(2) + ax + b=0 , where a,b, are complex numbers and y_(1), y_(2) are the roots of the quadratic equation y^(2) + |a|yy+ |b| = 0 . If |x_(1)| = |x_(2)|=1 , then prove that |y_(1)| = |y_(2)| =1

Consider the equation x ^(3) -ax ^(2) +bx-c=0, where a,b,c are rational number, a ne 1. it is given that x _(1), x _(2) and x _(1)x_(2) are the real roots of the equation. Then x _(1) x _(2) ((a +1)/(b +c))=

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. If sintheta1sintheta2-costheta1costheta2+1=0, then the value of tan((t...

    Text Solution

    |

  2. (sqrt(2)-sinalpha)/(sinalphapi-cosalphapi) is equal to sec(alpha/2-pi/...

    Text Solution

    |

  3. If x(1) and x(2) are two distind roots of the equation a cos x+b sinx=...

    Text Solution

    |

  4. If sin(y+z-x),sin(z+x-y),"sin"(x+y-z) are in A.P., then t a n x ,tany ...

    Text Solution

    |

  5. If (tan(alpha+beta+gamma))/("tan"(alpha-beta-gamma))=(tangamma)/(tanbe...

    Text Solution

    |

  6. If sintheta(1)-sintheta(2)=a and cos theta(1)+costheta(2)=b, then

    Text Solution

    |

  7. The value of expression (2(sin1^0+sin2^0+sin3^0++sin89^0)/(2(cos1^0+co...

    Text Solution

    |

  8. If A,B,C, are the angles of a triangle such that cotA/2=3tanC/2, then ...

    Text Solution

    |

  9. If 2sec 2theta=tan phi+cotphi, then one of the values of theta+phi is

    Text Solution

    |

  10. The roots of the equation 4x^2-2sqrt5 x +1=0 are .

    Text Solution

    |

  11. If A and B are acute positive angles satisfying the equations 3 sin^(2...

    Text Solution

    |

  12. If cos 25^0 + sin 25^0 = K, then cos 50^0 is equal to

    Text Solution

    |

  13. The value of cot(7pi)/(16)+2cot(3pi)/8+cot(15pi)/(16) is 4 (b) 2 (c...

    Text Solution

    |

  14. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  15. (sin^2A-sin^2B)/(sinAcosA-sinBcosB) is equal to (a) tan(A-B) (b...

    Text Solution

    |

  16. If cos(alpha-beta)=3sin(alpha+beta),t h e n1/(1-3sin2alpha)+1/(1-3sin2...

    Text Solution

    |

  17. The value of cos^2 10^0-cos10^0cos50^0+cos^2 50^0 is equal to 4/3 (b)...

    Text Solution

    |

  18. If t a n^2theta=2t a n^2varphi+1 , prove that cos2theta+s in^2varphi=0...

    Text Solution

    |

  19. If sinx+cos e cx+tany+coty=4 where xa n dy in [0,pi/2],t h e ntany/2 i...

    Text Solution

    |

  20. If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi), th...

    Text Solution

    |