Home
Class 12
MATHS
If sinx+cosx=sqrt7/2 where xin[0,pi/4] t...

If `sinx+cosx=sqrt7/2` where x`in[0,pi/4]` then `tan(x/2)` is equal to

A

(a) `(3-sqrt(7))/(3)`

B

(b) `(sqrt(7)-2)/(3)`

C

(c) `(4-sqrt(7))/(4)`

D

(d) none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{x}{2}\right) \) given that \( \sin x + \cos x = \frac{\sqrt{7}}{2} \) where \( x \in \left[0, \frac{\pi}{4}\right] \). ### Step 1: Square both sides of the equation We start with the equation: \[ \sin x + \cos x = \frac{\sqrt{7}}{2} \] Squaring both sides gives: \[ (\sin x + \cos x)^2 = \left(\frac{\sqrt{7}}{2}\right)^2 \] This simplifies to: \[ \sin^2 x + \cos^2 x + 2 \sin x \cos x = \frac{7}{4} \] ### Step 2: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 x + \cos^2 x = 1 \] Substituting this into our equation gives: \[ 1 + 2 \sin x \cos x = \frac{7}{4} \] Now, we can solve for \( 2 \sin x \cos x \): \[ 2 \sin x \cos x = \frac{7}{4} - 1 = \frac{3}{4} \] ### Step 3: Find \( \sin x \cos x \) Dividing both sides by 2 gives: \[ \sin x \cos x = \frac{3}{8} \] ### Step 4: Find \( \cos x - \sin x \) Next, we will find \( \cos x - \sin x \) by squaring it: \[ (\cos x - \sin x)^2 = \cos^2 x + \sin^2 x - 2 \sin x \cos x \] Substituting the known values: \[ (\cos x - \sin x)^2 = 1 - 2 \cdot \frac{3}{8} = 1 - \frac{3}{4} = \frac{1}{4} \] Taking the square root gives: \[ \cos x - \sin x = \frac{1}{2} \] Since \( x \in \left[0, \frac{\pi}{4}\right] \), both \( \cos x \) and \( \sin x \) are positive. ### Step 5: Solve for \( \cos x \) and \( \sin x \) Now we have two equations: 1. \( \sin x + \cos x = \frac{\sqrt{7}}{2} \) 2. \( \cos x - \sin x = \frac{1}{2} \) Adding these two equations: \[ 2\cos x = \frac{\sqrt{7}}{2} + \frac{1}{2} \] \[ 2\cos x = \frac{\sqrt{7} + 1}{2} \] Thus, \[ \cos x = \frac{\sqrt{7} + 1}{4} \] Now substituting back to find \( \sin x \): \[ \sin x = \frac{\sqrt{7}}{2} - \cos x = \frac{\sqrt{7}}{2} - \frac{\sqrt{7} + 1}{4} \] Finding a common denominator: \[ \sin x = \frac{2\sqrt{7}}{4} - \frac{\sqrt{7} + 1}{4} = \frac{2\sqrt{7} - \sqrt{7} - 1}{4} = \frac{\sqrt{7} - 1}{4} \] ### Step 6: Find \( \tan\left(\frac{x}{2}\right) \) Using the half-angle formula: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \] Substituting the values of \( \cos x \) and \( \sin x \): \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \frac{\sqrt{7} + 1}{4}}{\frac{\sqrt{7} - 1}{4}} = \frac{\frac{4 - (\sqrt{7} + 1)}{4}}{\frac{\sqrt{7} - 1}{4}} = \frac{4 - \sqrt{7} - 1}{\sqrt{7} - 1} = \frac{3 - \sqrt{7}}{\sqrt{7} - 1} \] ### Step 7: Rationalize the denominator To rationalize: \[ \tan\left(\frac{x}{2}\right) = \frac{(3 - \sqrt{7})(\sqrt{7} + 1)}{(\sqrt{7} - 1)(\sqrt{7} + 1)} = \frac{(3\sqrt{7} + 3 - 7 - \sqrt{7})}{7 - 1} = \frac{(2\sqrt{7} - 4)}{6} = \frac{\sqrt{7} - 2}{3} \] Thus, the final answer is: \[ \tan\left(\frac{x}{2}\right) = \frac{\sqrt{7} - 2}{3} \]

To solve the problem, we need to find the value of \( \tan\left(\frac{x}{2}\right) \) given that \( \sin x + \cos x = \frac{\sqrt{7}}{2} \) where \( x \in \left[0, \frac{\pi}{4}\right] \). ### Step 1: Square both sides of the equation We start with the equation: \[ \sin x + \cos x = \frac{\sqrt{7}}{2} \] Squaring both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

If sinx+cosx=(sqrt(7))/2, where x in 1s t quadrant, then tanx/2 is equal to (a) (3-sqrt(7))/3 (b) (sqrt(7)-2)/3 (c) (4-sqrt(7))/4 (d) none of these

If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2) then y' is equal to

If (sinx)/(siny)=1/2,(cosx)/(cosy)=3/2 , where x , y , in (0,pi/2), then the value of "tan"(x+y) is equal to (a) sqrt(13) (b) sqrt(14) (c) sqrt(17) (d) sqrt(15)

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If sinx+cosx=1/5,0lexlepi, then tan x is equal to

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. If cosx= tany, cosy= tanz and cosz= tanx, prove that sinx= siny= sinz ...

    Text Solution

    |

  2. The value of 70^0+4cos70^0 is 1/(sqrt(3)) (b) sqrt(3) (c) 2sqrt(3) ...

    Text Solution

    |

  3. If sinx+cosx=sqrt7/2 where xin[0,pi/4] then tan(x/2) is equal to

    Text Solution

    |

  4. If (tan3A)/(tanA)=k(k!=1) then which of the following is not true? (co...

    Text Solution

    |

  5. If x in (pi,(3pi)/2),t h e n4cos^2(pi/4-x/2)+sqrt(4sin^4x+sin^2 2x) is...

    Text Solution

    |

  6. If cosx=(2cosy-1)/(2-cosy), where x , y in (0,pi) then tan(x/2)xxcot(y...

    Text Solution

    |

  7. cot16^0cot44^0+cot44^0cot76^0-cot76^0cot16^0= 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  8. If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((1-b)/(a+b)) is equal to 2s ...

    Text Solution

    |

  9. Given that (1+sqrt(1+x))tany=1+sqrt(1-x) . Then sin4y is equal to 4x ...

    Text Solution

    |

  10. If cos2B=(cos(A+C))/("cos"(A-C)), then tanA ,t a n B ,tanC are in A.P....

    Text Solution

    |

  11. If ("cos"(x-y))/("cos"(+y))+("cos"(z+t))/(cos(z-t))=0 , then the value...

    Text Solution

    |

  12. If tan beta=2sin alpha sin gamma co sec(alpha+gamma), then cot alpha,c...

    Text Solution

    |

  13. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  14. If cos^3xsin2x=sum(r=0)^n axsin(r x),AAx in R then

    Text Solution

    |

  15. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  16. Given that a , b , c , are the side of a A B C which is right angled ...

    Text Solution

    |

  17. If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of th...

    Text Solution

    |

  18. tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

    Text Solution

    |

  19. In triangle A B C , if angle is 90^0 and the area of triangle is 30 sq...

    Text Solution

    |

  20. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |