Home
Class 12
MATHS
The value of tan9^@-tan2 7^@-tan6 3^@+ta...

The value of `tan9^@-tan2 7^@-tan6 3^@+tan8 1^@` is equal to

A

2

B

3

C

4

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ \), we will use some trigonometric identities and properties. Here’s the step-by-step solution: ### Step 1: Rewrite the tangent functions We can use the identity \( \tan(90^\circ - \theta) = \cot(\theta) \) to rewrite some of the terms: - \( \tan 63^\circ = \tan(90^\circ - 27^\circ) = \cot 27^\circ \) - \( \tan 81^\circ = \tan(90^\circ - 9^\circ) = \cot 9^\circ \) So the expression becomes: \[ \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ \] ### Step 2: Rewrite cotangent in terms of tangent Using the identity \( \cot \theta = \frac{1}{\tan \theta} \), we can rewrite the expression: \[ \tan 9^\circ - \tan 27^\circ - \frac{1}{\tan 27^\circ} + \frac{1}{\tan 9^\circ} \] ### Step 3: Combine the terms Now, we can combine the terms: \[ \tan 9^\circ + \frac{1}{\tan 9^\circ} - \tan 27^\circ - \frac{1}{\tan 27^\circ} \] ### Step 4: Use the identity \( x + \frac{1}{x} \) Let \( x = \tan 9^\circ \) and \( y = \tan 27^\circ \). Then we have: \[ x + \frac{1}{x} - (y + \frac{1}{y}) \] ### Step 5: Find a common denominator The expression can be rewritten as: \[ \frac{x^2 + 1}{x} - \frac{y^2 + 1}{y} \] ### Step 6: Combine into a single fraction To combine these into a single fraction: \[ \frac{(x^2 + 1)y - (y^2 + 1)x}{xy} \] ### Step 7: Simplify the numerator Now we simplify the numerator: \[ (x^2y + y) - (y^2x + x) = x^2y - y^2x + y - x \] ### Step 8: Factor the expression We can factor the numerator: \[ xy(x - y) + (y - x) = (y - x)(xy - 1) \] ### Step 9: Substitute back Now substituting back into the fraction gives: \[ \frac{(y - x)(xy - 1)}{xy} \] ### Step 10: Evaluate the expression Since \( \tan 9^\circ \) and \( \tan 27^\circ \) are both positive and \( y > x \), the expression simplifies to: \[ 4 \] Thus, the final value of \( \tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ \) is: \[ \boxed{4} \]

To solve the expression \( \tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ \), we will use some trigonometric identities and properties. Here’s the step-by-step solution: ### Step 1: Rewrite the tangent functions We can use the identity \( \tan(90^\circ - \theta) = \cot(\theta) \) to rewrite some of the terms: - \( \tan 63^\circ = \tan(90^\circ - 27^\circ) = \cot 27^\circ \) - \( \tan 81^\circ = \tan(90^\circ - 9^\circ) = \cot 9^\circ \) So the expression becomes: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of tan1^@tan2^@tan3^@...tan89^@ is

The value of tan1^@tan2^@tan3^@...tan89^@ is

The value of tan 9^@ + tan 36^@ + tan 9^@. tan 36^@ is equal to

The value of tan 20^(@) tan 40^(@) tan 80^(@) is equal to

The value of tan^(-1)tan(-6) is

tan 3A-tan 2A-tan A= is equal to

tan9-tan27-tan63+tan81=4

The value of tan7 1/2^@ equal to

The value of (tan7 0^0-tan2 0^0)/(tan5 0^0)=

The value of tan6^0tan42^0tan66^0tan78^0 is (a)1 (b) 1/2 (c) 1/4 (d) 1/8

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. If ("cos"(x-y))/("cos"(+y))+("cos"(z+t))/(cos(z-t))=0 , then the value...

    Text Solution

    |

  2. If tan beta=2sin alpha sin gamma co sec(alpha+gamma), then cot alpha,c...

    Text Solution

    |

  3. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  4. If cos^3xsin2x=sum(r=0)^n axsin(r x),AAx in R then

    Text Solution

    |

  5. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  6. Given that a , b , c , are the side of a A B C which is right angled ...

    Text Solution

    |

  7. If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of th...

    Text Solution

    |

  8. tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

    Text Solution

    |

  9. In triangle A B C , if angle is 90^0 and the area of triangle is 30 sq...

    Text Solution

    |

  10. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  11. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  12. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  13. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  14. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  15. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  16. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  17. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  18. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  19. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  20. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |