Home
Class 12
MATHS
If cos^3xsin2x=sum(r=0)^n axsin(r x),AAx...

If `cos^3xsin2x=sum_(r=0)^n a_xsin(r x),AAx in R` then

A

`n=5,a_(1)=1//2`

B

`n=5,alpha_(1)=1//4`

C

`n=5,a_(2)=1//8`

D

`n=5,a_(2)=1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos(3x) \sin(2x) = \sum_{r=0}^{n} a_r \sin(rx) \), we will use trigonometric identities and properties to express the left-hand side in the desired summation form. ### Step-by-Step Solution: 1. **Use the Product-to-Sum Formulas**: We start with the expression \( \cos(3x) \sin(2x) \). We can use the product-to-sum identities: \[ \cos(A) \sin(B) = \frac{1}{2} [\sin(A + B) - \sin(A - B)] \] Here, let \( A = 3x \) and \( B = 2x \): \[ \cos(3x) \sin(2x) = \frac{1}{2} [\sin(3x + 2x) - \sin(3x - 2x)] = \frac{1}{2} [\sin(5x) - \sin(x)] \] 2. **Rewrite the Expression**: Thus, we can rewrite the left-hand side: \[ \cos(3x) \sin(2x) = \frac{1}{2} \sin(5x) - \frac{1}{2} \sin(x) \] 3. **Express in Summation Form**: Now we can express this in the form of a summation: \[ \cos(3x) \sin(2x) = -\frac{1}{2} \sin(x) + \frac{1}{2} \sin(5x) \] This can be represented as: \[ = \sum_{r=0}^{5} a_r \sin(rx) \] where: - \( a_1 = -\frac{1}{2} \) for \( r=1 \) (coefficient of \( \sin(x) \)), - \( a_5 = \frac{1}{2} \) for \( r=5 \) (coefficient of \( \sin(5x) \)), - \( a_r = 0 \) for all other \( r \). 4. **Identify \( n \) and \( a_r \)**: From the expression, we see that the highest value of \( r \) is 5, thus \( n = 5 \). The coefficients are: - \( a_1 = -\frac{1}{2} \) - \( a_5 = \frac{1}{2} \) - \( a_r = 0 \) for \( r = 0, 2, 3, 4 \). ### Conclusion: Thus, the values are: - \( n = 5 \) - \( a_1 = -\frac{1}{2} \) - \( a_5 = \frac{1}{2} \)

To solve the problem \( \cos(3x) \sin(2x) = \sum_{r=0}^{n} a_r \sin(rx) \), we will use trigonometric identities and properties to express the left-hand side in the desired summation form. ### Step-by-Step Solution: 1. **Use the Product-to-Sum Formulas**: We start with the expression \( \cos(3x) \sin(2x) \). We can use the product-to-sum identities: \[ \cos(A) \sin(B) = \frac{1}{2} [\sin(A + B) - \sin(A - B)] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If 8sin^(3)xsin3x=sum_(r=0)^(n)a^(r)cosrx is an identity in x, then n=

Suppose sin^3xsin3x=sum_(m=0)^n C_mcosm x is an identity in x , where C_0,C_1 ,C_n are constants and C_n!=0, the the value of n is ________

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If (1-x^2)^n=sum_(r=0)^n a_r x^r(1-x)^(2n-r),t h e na_r is equal to ^n C_r b. ^n C_r3^r c. ^2n C_r d. ^n C_r2^r

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. If tan beta=2sin alpha sin gamma co sec(alpha+gamma), then cot alpha,c...

    Text Solution

    |

  2. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  3. If cos^3xsin2x=sum(r=0)^n axsin(r x),AAx in R then

    Text Solution

    |

  4. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  5. Given that a , b , c , are the side of a A B C which is right angled ...

    Text Solution

    |

  6. If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of th...

    Text Solution

    |

  7. tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

    Text Solution

    |

  8. In triangle A B C , if angle is 90^0 and the area of triangle is 30 sq...

    Text Solution

    |

  9. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  10. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  11. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  12. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  13. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  14. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  15. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  16. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  17. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  18. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  19. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  20. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |