Home
Class 12
MATHS
tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equ...

`tan^6pi/9-33tan^4pi/9+27tan^2pi/9` is equal to (a) 0 (b) `sqrt(3)` (c) 3 (d) 9

A

0

B

`sqrt(3)`

C

3

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^6\left(\frac{\pi}{9}\right) - 33\tan^4\left(\frac{\pi}{9}\right) + 27\tan^2\left(\frac{\pi}{9}\right) \), we can use the identity for \( \tan(3\theta) \). ### Step 1: Use the identity for \( \tan(3\theta) \) The identity states: \[ \tan(3\theta) = \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \] Let \( \theta = \frac{\pi}{9} \). Therefore, \( 3\theta = \frac{\pi}{3} \). ### Step 2: Substitute \( \theta \) into the identity We know that \( \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \). Thus, we can write: \[ \sqrt{3} = \frac{3\tan\left(\frac{\pi}{9}\right) - \tan^3\left(\frac{\pi}{9}\right)}{1 - 3\tan^2\left(\frac{\pi}{9}\right)} \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ \sqrt{3}(1 - 3\tan^2\left(\frac{\pi}{9}\right)) = 3\tan\left(\frac{\pi}{9}\right) - \tan^3\left(\frac{\pi}{9}\right) \] ### Step 4: Rearrange the equation Rearranging the equation gives: \[ \sqrt{3} - 3\sqrt{3}\tan^2\left(\frac{\pi}{9}\right) = 3\tan\left(\frac{\pi}{9}\right) - \tan^3\left(\frac{\pi}{9}\right) \] ### Step 5: Square both sides Squaring both sides results in: \[ 3 = (3\tan\left(\frac{\pi}{9}\right) - \tan^3\left(\frac{\pi}{9}\right))^2 + 9\tan^2\left(\frac{\pi}{9}\right)(\sqrt{3})^2 \] This simplifies to: \[ 3 = (3\tan\left(\frac{\pi}{9}\right) - \tan^3\left(\frac{\pi}{9}\right))^2 + 27\tan^2\left(\frac{\pi}{9}\right) \] ### Step 6: Expand the squared term Expanding the squared term gives: \[ 3 = 9\tan^2\left(\frac{\pi}{9}\right) - 6\tan^4\left(\frac{\pi}{9}\right) + \tan^6\left(\frac{\pi}{9}\right) + 27\tan^2\left(\frac{\pi}{9}\right) \] Combining like terms results in: \[ 3 = \tan^6\left(\frac{\pi}{9}\right) + 36\tan^2\left(\frac{\pi}{9}\right) - 6\tan^4\left(\frac{\pi}{9}\right) \] ### Step 7: Rearranging the equation Rearranging gives: \[ \tan^6\left(\frac{\pi}{9}\right) - 6\tan^4\left(\frac{\pi}{9}\right) + 36\tan^2\left(\frac{\pi}{9}\right) - 3 = 0 \] ### Step 8: Substitute \( x = \tan^2\left(\frac{\pi}{9}\right) \) Let \( x = \tan^2\left(\frac{\pi}{9}\right) \). The equation becomes: \[ x^3 - 6x^2 + 36x - 3 = 0 \] ### Step 9: Factor the polynomial Using synthetic division or other methods, we can find that this polynomial has a root at \( x = 3 \). ### Step 10: Conclusion Thus, substituting back gives: \[ \tan^2\left(\frac{\pi}{9}\right) = 3 \] Therefore, the original expression evaluates to: \[ \tan^6\left(\frac{\pi}{9}\right) - 33\tan^4\left(\frac{\pi}{9}\right) + 27\tan^2\left(\frac{\pi}{9}\right) = 3 \] The final answer is: \[ \boxed{3} \]

To solve the expression \( \tan^6\left(\frac{\pi}{9}\right) - 33\tan^4\left(\frac{\pi}{9}\right) + 27\tan^2\left(\frac{\pi}{9}\right) \), we can use the identity for \( \tan(3\theta) \). ### Step 1: Use the identity for \( \tan(3\theta) \) The identity states: \[ \tan(3\theta) = \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) is equal to (a)0 (b) sqrt3 (c) 3(d)9

9sec^2A-9tan^2A is equal to (a) 1 (b) 9 (c) 8 (d) 0

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3)+8tan((8pi)/3) is equal to (A) -5sqrt(3) (B) -5/(sqrt3) (C) 5sqrt(3) (D) 5/(sqrt3)

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

If (3-tan^2(pi/7))/(1-tan^2(pi/7))=kcos(pi/7) then the value of k is (a)1 (b) 2 (c) 3 (d) 4

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

If int_0^a(dx)/(sqrt(x+a)+sqrt(x))=int_0^(pi/8)(2tantheta)/(sin2theta)d theta then value of ' a ' is a equal to (a >0) (a) 3/4 (b) pi/4 (c) (3pi)/4 (d) 9/(16)

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |

  2. If cos^3xsin2x=sum(r=0)^n axsin(r x),AAx in R then

    Text Solution

    |

  3. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  4. Given that a , b , c , are the side of a A B C which is right angled ...

    Text Solution

    |

  5. If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of th...

    Text Solution

    |

  6. tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

    Text Solution

    |

  7. In triangle A B C , if angle is 90^0 and the area of triangle is 30 sq...

    Text Solution

    |

  8. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  9. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  10. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  11. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  12. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  13. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  14. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  15. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  16. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  17. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  18. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  19. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  20. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |