Home
Class 12
MATHS
If theta=3alpha and sin theta=(a)/(sqrt(...

If `theta=3alpha` and `sin theta=(a)/(sqrt(a^(2)+b^(2))` , the value of the expression `a co sec alpha-b sec alpha` is

A

(a) `(a)/(sqrt(a^(2)+b^(2))`

B

(b) `2sqrt(a^(2)+b^(2))`

C

(c) 'a+b'

D

(d) none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of the expression \( a \csc \alpha - b \sec \alpha \) given that \( \theta = 3\alpha \) and \( \sin \theta = \frac{a}{\sqrt{a^2 + b^2}} \). ### Step 1: Substitute for \(\theta\) Since \(\theta = 3\alpha\), we can write: \[ \sin(3\alpha) = \frac{a}{\sqrt{a^2 + b^2}} \] ### Step 2: Use the sine triple angle formula The sine triple angle formula states: \[ \sin(3\alpha) = 3\sin(\alpha) - 4\sin^3(\alpha) \] Thus, we have: \[ 3\sin(\alpha) - 4\sin^3(\alpha) = \frac{a}{\sqrt{a^2 + b^2}} \] ### Step 3: Find \(\csc \alpha\) and \(\sec \alpha\) We know: \[ \csc \alpha = \frac{1}{\sin \alpha} \quad \text{and} \quad \sec \alpha = \frac{1}{\cos \alpha} \] We need to find \( a \csc \alpha - b \sec \alpha \). ### Step 4: Express \(\csc \alpha\) and \(\sec \alpha\) in terms of \(\sin \alpha\) and \(\cos \alpha\) Substituting these into our expression gives: \[ a \csc \alpha - b \sec \alpha = \frac{a}{\sin \alpha} - \frac{b}{\cos \alpha} \] ### Step 5: Find a common denominator The common denominator for the two fractions is \(\sin \alpha \cos \alpha\): \[ = \frac{a \cos \alpha - b \sin \alpha}{\sin \alpha \cos \alpha} \] ### Step 6: Substitute \(\sin(3\alpha)\) and \(\cos(3\alpha)\) Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we can find \(\cos(3\alpha)\): \[ \cos(3\alpha) = \sqrt{1 - \sin^2(3\alpha)} = \sqrt{1 - \left(\frac{a}{\sqrt{a^2 + b^2}}\right)^2} \] This simplifies to: \[ \cos(3\alpha) = \sqrt{\frac{b^2}{a^2 + b^2}} = \frac{b}{\sqrt{a^2 + b^2}} \] ### Step 7: Substitute back into the expression Now substituting back, we have: \[ = \frac{a \cos \alpha - b \sin \alpha}{\sin \alpha \cos \alpha} \] We can express \(\sin(3\alpha)\) and \(\cos(3\alpha)\) in terms of \(\sin \alpha\) and \(\cos \alpha\). ### Step 8: Final simplification Using the sine difference identity: \[ \sin(3\alpha - \alpha) = \sin(2\alpha) = 2 \sin \alpha \cos \alpha \] Thus, the expression simplifies to: \[ = \frac{2\sqrt{a^2 + b^2}}{2} = \sqrt{a^2 + b^2} \] ### Final Answer The value of the expression \( a \csc \alpha - b \sec \alpha \) is: \[ \sqrt{a^2 + b^2} \]

To solve the problem step by step, we need to find the value of the expression \( a \csc \alpha - b \sec \alpha \) given that \( \theta = 3\alpha \) and \( \sin \theta = \frac{a}{\sqrt{a^2 + b^2}} \). ### Step 1: Substitute for \(\theta\) Since \(\theta = 3\alpha\), we can write: \[ \sin(3\alpha) = \frac{a}{\sqrt{a^2 + b^2}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If theta=3alpha and sintheta=a/(sqrt(a^2+b^2)), the value of the expression acos e calpha-bsecalpha is (a) a/(sqrt(a^2+b^2)) (b) 2sqrt(a^2+b^2) (c) a+b (d) none of these

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to

If 3costheta + 4sin theta = A sin (theta +alpha) , then values of A and alpha are

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

If 3 cos theta+4 sin theta=A sin (theta+alpha) , then values of A and alpha are

If Delta_(1) is the area of the triangle with vertices (0, 0), (a tan alpha, b cot alpha), (a sin alpha, b cos alpha), Delta_(2) is the area of the triangle with vertices (a sec^(2) alpha, b cos ec^(2) alpha), (a + a sin^(2)alpha, b + b cos^(2)alpha) and Delta_(3) is the area of the triangle with vertices (0,0), (a tan alpha, -b cot alpha), (a sin alpha, b cos alpha) . Show that there is no value of alpha for which Delta_(1), Delta_(2) and Delta_(3) are in GP.

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

If cos^4 theta sec^2 alpha,1/2 and sin^4 theta cosec^2 alpha are in A.P. , then cos^8 theta sec^6 alpha ,1/2 and sin^8 theta cosec^6 alpha are

If tan alpha = (sin theta sin varphi)/(cos theta + cos varphi) , prove that one of the values of tan\ alpha/2 is tan\ theta/2 tan\ varphi/2 .

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c)...

    Text Solution

    |

  2. Given that a , b , c , are the side of a A B C which is right angled ...

    Text Solution

    |

  3. If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of th...

    Text Solution

    |

  4. tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

    Text Solution

    |

  5. In triangle A B C , if angle is 90^0 and the area of triangle is 30 sq...

    Text Solution

    |

  6. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  7. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  8. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  9. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  10. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  11. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  12. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  13. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  14. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  15. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  16. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  17. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  18. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |

  19. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  20. If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of ...

    Text Solution

    |