Home
Class 12
MATHS
In triangle ABC,(sinA+sinB+sinC)/(sinA+s...

In triangle ABC,`(sinA+sinB+sinC)/(sinA+sinB-sinC)` is equal to

A

`tan((A)/(2))cot((B)/(2))`

B

`cot((A)/(2))tan((B)/(2))`

C

`cot((A)/(2))cot((B)/(2))`

D

`tan((A)/(2))tan((B)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \(\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C}\) in triangle ABC. ### Step-by-Step Solution: 1. **Understanding the Triangle Properties**: In any triangle, the angles \(A\), \(B\), and \(C\) satisfy the equation \(A + B + C = \pi\). This means we can express \(C\) as \(C = \pi - A - B\). 2. **Using the Sine Rule**: The sine of angle \(C\) can be rewritten using the sine addition formula: \[ \sin C = \sin(\pi - A - B) = \sin(A + B) = \sin A \cos B + \cos A \sin B \] However, for our simplification, we will directly use the sine values. 3. **Simplifying the Denominator**: The denominator is \(\sin A + \sin B - \sin C\). We can rewrite \(\sin C\) as: \[ \sin C = \sin A + \sin B - \sin C \] Thus, we can express the denominator as: \[ \sin A + \sin B - (\sin A + \sin B - \sin C) = \sin C \] 4. **Simplifying the Numerator**: The numerator is \(\sin A + \sin B + \sin C\). Using the sine addition formula again, we can express this as: \[ \sin A + \sin B + \sin C = \sin A + \sin B + (\sin A + \sin B - \sin C) \] This simplifies to: \[ 2(\sin A + \sin B) \] 5. **Final Expression**: Now substituting back into our original expression: \[ \frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C} = \frac{2(\sin A + \sin B)}{\sin C} \] 6. **Using Trigonometric Identities**: We can use the identity for sine in terms of half angles: \[ \sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Since \(A + B = \pi - C\), we can substitute: \[ \sin C = 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right) \] 7. **Conclusion**: Therefore, the final expression simplifies to: \[ \frac{2 \cdot 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)}{2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right)} = 4 \cdot \frac{\sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)}{\sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right)} \] ### Final Answer: Thus, the value of \(\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C}\) is equal to \(4 \cdot \cos\left(\frac{A}{2}\right) \cdot \cos\left(\frac{B}{2}\right)\).

To solve the problem, we need to simplify the expression \(\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C}\) in triangle ABC. ### Step-by-Step Solution: 1. **Understanding the Triangle Properties**: In any triangle, the angles \(A\), \(B\), and \(C\) satisfy the equation \(A + B + C = \pi\). This means we can express \(C\) as \(C = \pi - A - B\). 2. **Using the Sine Rule**: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangle A B C ,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

In a DeltaABC, sin A sinB sinC is

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to

If in a triangle ABC, Rr(sinA+sinB+sinC)=96 then the square of the area of the triangle ABC is…….

In Delta ABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA SinB then C =

In a triangle A B C , if cos A=(sinB)/(2sinC) , show that the triangle is isosceles.

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

In a triangle ABC if sinA+sinB+sinC = 3^(3/2)/2 prove that the triangle is equilateral.

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  2. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  3. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  4. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  5. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  6. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  7. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  8. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  9. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  10. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  11. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |

  12. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  13. If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of ...

    Text Solution

    |

  14. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  15. If tanx =n tany , n in R^+ then the maximum value of sec^2(x-y) is

    Text Solution

    |

  16. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  17. The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

    Text Solution

    |

  18. If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,co...

    Text Solution

    |

  19. sum(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1)))) is

    Text Solution

    |

  20. If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b xsinc+ysin2c+...

    Text Solution

    |