Home
Class 12
MATHS
If cos^(2)A+cos^(2)B+cos^(2)C=1, then tr...

If `cos^(2)A+cos^(2)B+cos^(2)C=1`, then `triangle ABC` is

A

equilateral

B

isosceles

C

right angled

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation \( \cos^2 A + \cos^2 B + \cos^2 C = 1 \) and determine the type of triangle \( ABC \) represents. ### Step-by-step Solution: 1. **Start with the given equation:** \[ \cos^2 A + \cos^2 B + \cos^2 C = 1 \] 2. **Rearranging the equation:** Bring \( 1 \) to the left-hand side: \[ \cos^2 A + \cos^2 B + \cos^2 C - 1 = 0 \] 3. **Using the identity for cosine:** We can express \( \cos^2 C \) using the identity \( 1 - \cos^2 C = \sin^2 C \): \[ \cos^2 A + \cos^2 B - (1 - \cos^2 C) = 0 \] This simplifies to: \[ \cos^2 A + \cos^2 B - 1 + \cos^2 C = 0 \] 4. **Rearranging again:** \[ \cos^2 A + \cos^2 B = 1 - \cos^2 C \] 5. **Using the cosine addition formula:** We know that \( \cos^2 A + \cos^2 B \) can be expressed using the cosine of the sum and difference: \[ \cos^2 A + \cos^2 B = \cos(A + B) \cos(A - B) \] However, we will focus on the triangle properties instead. 6. **Using the triangle angle sum property:** In a triangle, we have: \[ A + B + C = 180^\circ \quad \text{(or } \pi \text{ radians)} \] Therefore, we can express \( C \) as: \[ C = 180^\circ - (A + B) \] 7. **Substituting for \( C \):** Thus, we can write: \[ \cos^2 C = \cos^2(180^\circ - (A + B)) = \cos^2(A + B) \] Using the identity \( \cos(180^\circ - x) = -\cos x \): \[ \cos^2 C = \cos^2(A + B) \] 8. **Analyzing the implications:** The equation \( \cos^2 A + \cos^2 B + \cos^2 C = 1 \) suggests that at least one of the angles must be \( 90^\circ \) for the equality to hold true. This is because the sum of squares of the cosines of angles in a triangle can only equal 1 if one angle is a right angle. 9. **Conclusion:** Therefore, we conclude that triangle \( ABC \) must be a right-angled triangle. ### Final Answer: Triangle \( ABC \) is a right-angled triangle. ---

To solve the problem, we need to analyze the given equation \( \cos^2 A + \cos^2 B + \cos^2 C = 1 \) and determine the type of triangle \( ABC \) represents. ### Step-by-step Solution: 1. **Start with the given equation:** \[ \cos^2 A + \cos^2 B + \cos^2 C = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

In DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A , then Delta ABC is

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

If in a triangle ABC, cos A +cos B+cos C=3/2 , prove that the triangle is equilateral.

If cos 3A +cos 3B+cos 3C=1 then one of the angles of the triangle ABC is

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  2. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  3. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  4. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  5. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  6. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  7. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  8. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  9. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  10. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  11. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |

  12. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  13. If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of ...

    Text Solution

    |

  14. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  15. If tanx =n tany , n in R^+ then the maximum value of sec^2(x-y) is

    Text Solution

    |

  16. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  17. The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

    Text Solution

    |

  18. If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,co...

    Text Solution

    |

  19. sum(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1)))) is

    Text Solution

    |

  20. If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b xsinc+ysin2c+...

    Text Solution

    |