Home
Class 12
MATHS
If xsina+ysin2a+zsin3a=sin4a xsinb+ysin...

If `xsina+ysin2a+zsin3a=sin4a` `xsinb+ysin2b+zsin3b=sin4b` `xsinc+ysin2c+zsin3c=sin4c` then the roots of the equation `t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi,` are `sina ,sinb ,sinc` (b) `cosa ,cosb ,cosc` `sin2a ,sin2b ,sin2c` (d) `cos2a ,cos2bcos2c`

A

`sin a, sin b, sinc`

B

`cos a, cos b,cos c`

C

`sin 2a, sin 2b,sin2c`

D

`cos 2a,cos 2b cos 2c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the equations provided and derive the roots of the cubic equation step by step. ### Step-by-Step Solution: 1. **Given Equations**: We have three equations: \[ x \sin a + y \sin 2a + z \sin 3a = \sin 4a \] \[ x \sin b + y \sin 2b + z \sin 3b = \sin 4b \] \[ x \sin c + y \sin 2c + z \sin 3c = \sin 4c \] 2. **Using Trigonometric Identities**: We can rewrite the sine terms using known identities: - \(\sin 2a = 2 \sin a \cos a\) - \(\sin 3a = 3 \sin a - 4 \sin^3 a\) - \(\sin 4a = 2 \sin 2a \cos 2a = 4 \sin a \cos a \cos 2a\) Substituting these into the first equation gives: \[ x \sin a + y (2 \sin a \cos a) + z (3 \sin a - 4 \sin^3 a) = 4 \sin a \cos a \cos 2a \] 3. **Factoring Out \(\sin a\)**: Since \(\sin a \neq 0\) (as given), we can divide through by \(\sin a\): \[ x + 2y \cos a + z (3 - 4 \sin^2 a) = 4 \cos a \cos 2a \] 4. **Rearranging the Equation**: Rearranging gives us: \[ x + 2y \cos a + z (3 - 4 \sin^2 a) - 4 \cos a \cos 2a = 0 \] 5. **Using \(\cos 2a = 2 \cos^2 a - 1\)**: Substitute \(\cos 2a\): \[ x + 2y \cos a + z (3 - 4 \sin^2 a) - 4 \cos a (2 \cos^2 a - 1) = 0 \] 6. **Letting \(t = \cos a\)**: Define \(t = \cos a\). The equation can be rewritten in terms of \(t\): \[ t^3 - \frac{z}{2} t^2 - \frac{(y + 2)}{4} t + \frac{(z - x)}{8} = 0 \] 7. **Identifying Roots**: The roots of this cubic equation are \(t = \cos a\), \(t = \cos b\), and \(t = \cos c\) for the other two equations. Therefore, we conclude that: - The roots of the equation \(t^3 - \frac{z}{2} t^2 - \frac{(y + 2)}{4} t + \frac{(z - x)}{8} = 0\) are \(\cos a\), \(\cos b\), and \(\cos c\). ### Final Answer: The roots of the equation are: \[ \text{(b) } \cos a, \cos b, \cos c \]

To solve the given problem, we need to analyze the equations provided and derive the roots of the cubic equation step by step. ### Step-by-Step Solution: 1. **Given Equations**: We have three equations: \[ x \sin a + y \sin 2a + z \sin 3a = \sin 4a ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b , xsinc+ysin2c+zsin3c=sin4c , then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are (a) sina ,sinb ,sinc (b) cosa ,cosb ,cosc (c) sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c

Solve the system: x sin a + y sin 2a + z sin 3a = sin 4a x sin b + y sin 2b + z sin 3b = sin 4b x sin c + y sin 2c + z sin 3c = sin 4c

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

In DeltaABC ,prove that: sin2A + sin2B-sin2C=4cosA cosB sinC

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. A circular ring of radius 3 cm hangs horizontally from a point 4 cm ve...

    Text Solution

    |

  2. The distance between two parallel lines is unity. A point P lies betwe...

    Text Solution

    |

  3. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  4. If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos Bc...

    Text Solution

    |

  5. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  6. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  7. The value of sum(r=0)^(10)cos^3(rpi)/3 is equal to 1/4 (b) 1/8 (c) -...

    Text Solution

    |

  8. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  9. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  10. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  11. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |

  12. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  13. If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of ...

    Text Solution

    |

  14. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  15. If tanx =n tany , n in R^+ then the maximum value of sec^2(x-y) is

    Text Solution

    |

  16. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  17. The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

    Text Solution

    |

  18. If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,co...

    Text Solution

    |

  19. sum(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1)))) is

    Text Solution

    |

  20. If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b xsinc+ysin2c+...

    Text Solution

    |