Home
Class 12
MATHS
Solve cos 2x=|sin x|, x in (-pi/2, pi)....

Solve `cos 2x=|sin x|, x in (-pi/2, pi)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2x = |\sin x| \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \pi\right) \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \cos 2x \) can be expressed in terms of sine: \[ \cos 2x = 2\cos^2 x - 1 = 2\sin^2 x - 1 \] Thus, we can rewrite the equation as: \[ 2\cos^2 x - 1 = |\sin x| \] ### Step 2: Consider the cases for \( |\sin x| \) Since \( |\sin x| \) can be either \( \sin x \) or \( -\sin x \) depending on the value of \( x \), we will consider two cases: **Case 1:** \( \sin x \geq 0 \) (which occurs in the intervals \( [0, \frac{\pi}{2}] \)) \[ \cos 2x = \sin x \] **Case 2:** \( \sin x < 0 \) (which occurs in the intervals \( \left(-\frac{\pi}{2}, 0\right) \)) \[ \cos 2x = -\sin x \] ### Step 3: Solve Case 1 For \( \cos 2x = \sin x \): \[ 2\cos^2 x - 1 = \sin x \] Using \( \sin x = \sqrt{1 - \cos^2 x} \), we can substitute \( \sin x \) into the equation: \[ 2\cos^2 x - 1 = \sqrt{1 - \cos^2 x} \] Let \( \cos x = y \): \[ 2y^2 - 1 = \sqrt{1 - y^2} \] Squaring both sides: \[ (2y^2 - 1)^2 = 1 - y^2 \] Expanding and simplifying: \[ 4y^4 - 4y^2 + 1 = 1 - y^2 \] \[ 4y^4 - 3y^2 = 0 \] Factoring out \( y^2 \): \[ y^2(4y^2 - 3) = 0 \] This gives us: \[ y^2 = 0 \quad \text{or} \quad 4y^2 - 3 = 0 \] From \( 4y^2 - 3 = 0 \): \[ y^2 = \frac{3}{4} \quad \Rightarrow \quad y = \pm\frac{\sqrt{3}}{2} \] Thus, \( \cos x = 0 \) or \( \cos x = \frac{\sqrt{3}}{2} \). ### Step 4: Find \( x \) values for Case 1 1. \( \cos x = 0 \) gives \( x = \frac{\pi}{2} \) (not in the interval). 2. \( \cos x = \frac{\sqrt{3}}{2} \) gives \( x = \frac{\pi}{6} \). ### Step 5: Solve Case 2 For \( \cos 2x = -\sin x \): \[ 2\cos^2 x - 1 = -\sin x \] This leads to: \[ 2\cos^2 x - 1 = -\sqrt{1 - \cos^2 x} \] Let \( \cos x = y \): \[ 2y^2 - 1 = -\sqrt{1 - y^2} \] Squaring both sides: \[ (2y^2 - 1)^2 = 1 - y^2 \] Following the same steps as before, we get: \[ 4y^4 - 4y^2 + 1 = 1 - y^2 \] \[ 4y^4 - 3y^2 = 0 \] This gives us: \[ y^2 = 0 \quad \text{or} \quad 4y^2 - 3 = 0 \] From \( y^2 = 0 \), \( \cos x = 0 \) gives \( x = \frac{\pi}{2} \) (not in the interval). From \( 4y^2 - 3 = 0 \): \[ y^2 = \frac{3}{4} \quad \Rightarrow \quad y = -\frac{\sqrt{3}}{2} \] Thus, \( \cos x = -\frac{\sqrt{3}}{2} \) gives \( x = \frac{5\pi}{6} \). ### Final Solutions The solutions in the interval \( \left(-\frac{\pi}{2}, \pi\right) \) are: \[ x = \frac{\pi}{6}, \quad x = \frac{5\pi}{6} \]

To solve the equation \( \cos 2x = |\sin x| \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \pi\right) \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \cos 2x \) can be expressed in terms of sine: \[ \cos 2x = 2\cos^2 x - 1 = 2\sin^2 x - 1 \] Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|71 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve cos2x >|sinx|,x in (pi/2,pi)

Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)

Find the number of solution of the equations 2^(cos x)=|sin x|, when x in[-2pi,2pi]

Solve the equation 2 (cos x+cos 2x)+sin 2x (1+2 cos x)=2 sin x for x in [-pi, pi] .

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

The complete set of values of x, x in (-(pi)/(2), pi) satisfying the inequality cos 2x gt |sin x| is :

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

Solve : cos 3x + cos 2x = sin ""(3)/(2) x + sin "" (1)/(2) x, 0 lt x le pi.

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .