Home
Class 12
MATHS
Solve cosec^(2)theta-cot^(2) theta=cos t...

Solve `cosec^(2)theta-cot^(2) theta=cos theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc^2 \theta - \cot^2 \theta = \cos \theta \), we can follow these steps: ### Step 1: Rewrite the left-hand side using trigonometric identities We know from trigonometric identities that: \[ \csc^2 \theta - \cot^2 \theta = 1 \] Thus, we can rewrite the equation as: \[ 1 = \cos \theta \] ### Step 2: Solve for \( \theta \) The equation \( \cos \theta = 1 \) is satisfied when: \[ \theta = 2n\pi \quad \text{for any integer } n \] This is because the cosine function equals 1 at integer multiples of \( 2\pi \). ### Step 3: Write the general solution The general solution for the equation is: \[ \theta = 2n\pi \quad (n \in \mathbb{Z}) \] ### Summary of the solution The solution to the equation \( \csc^2 \theta - \cot^2 \theta = \cos \theta \) is: \[ \theta = 2n\pi \quad (n \in \mathbb{Z}) \]

To solve the equation \( \csc^2 \theta - \cot^2 \theta = \cos \theta \), we can follow these steps: ### Step 1: Rewrite the left-hand side using trigonometric identities We know from trigonometric identities that: \[ \csc^2 \theta - \cot^2 \theta = 1 \] Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.3|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|71 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

Solve tan^(2) theta+cot^(2) theta=2 .

Solve: tan^(2)3theta=cot^(2)theta

"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1 , If theta belongs to

Solve: cos2theta=cos^(2)theta

Solve: cot\ theta/2-cottheta=cosec\ theta/2

Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11 . Statement -2 :tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

solve cos^(2)theta+cos theta=1

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta