Home
Class 12
MATHS
Solve cot(x//2)-cosec (x//2)=cot x....

Solve `cot(x//2)-cosec (x//2)=cot x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot\left(\frac{x}{2}\right) - \csc\left(\frac{x}{2}\right) = \cot x \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting the cotangent and cosecant in terms of sine and cosine: \[ \cot\left(\frac{x}{2}\right) = \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}, \quad \csc\left(\frac{x}{2}\right) = \frac{1}{\sin\left(\frac{x}{2}\right)}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the equation as: \[ \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} - \frac{1}{\sin\left(\frac{x}{2}\right)} = \frac{\cos x}{\sin x} \] ### Step 2: Combine the left side Now, we can combine the left side over a common denominator: \[ \frac{\cos\left(\frac{x}{2}\right) - 1}{\sin\left(\frac{x}{2}\right)} = \frac{\cos x}{\sin x} \] ### Step 3: Use the identity for sine We know that \( \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \). Substituting this into the equation gives: \[ \frac{\cos\left(\frac{x}{2}\right) - 1}{\sin\left(\frac{x}{2}\right)} = \frac{\cos x}{2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)} \] ### Step 4: Cancel \(\sin\left(\frac{x}{2}\right)\) Assuming \( \sin\left(\frac{x}{2}\right) \neq 0 \), we can multiply both sides by \( \sin\left(\frac{x}{2}\right) \): \[ \cos\left(\frac{x}{2}\right) - 1 = \frac{\cos x}{2 \cos\left(\frac{x}{2}\right)} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 2 \cos\left(\frac{x}{2}\right) \left(\cos\left(\frac{x}{2}\right) - 1\right) = \cos x \] ### Step 6: Expand and rearrange Expanding the left side: \[ 2 \cos^2\left(\frac{x}{2}\right) - 2 \cos\left(\frac{x}{2}\right) = \cos x \] Using the identity \( \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \), we can substitute: \[ 2 \cos^2\left(\frac{x}{2}\right) - 2 \cos\left(\frac{x}{2}\right) = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] ### Step 7: Simplify the equation This simplifies to: \[ -2 \cos\left(\frac{x}{2}\right) = -1 \] Thus, we have: \[ 2 \cos\left(\frac{x}{2}\right) = 1 \implies \cos\left(\frac{x}{2}\right) = \frac{1}{2} \] ### Step 8: Solve for \(x\) The general solution for \( \cos\left(\frac{x}{2}\right) = \frac{1}{2} \) is: \[ \frac{x}{2} = 2n\pi \pm \frac{\pi}{3} \] Multiplying through by 2 gives: \[ x = 4n\pi \pm \frac{2\pi}{3} \] ### Final Answer Thus, the solution to the equation is: \[ x = 4n\pi \pm \frac{2\pi}{3}, \quad n \in \mathbb{Z} \]

To solve the equation \( \cot\left(\frac{x}{2}\right) - \csc\left(\frac{x}{2}\right) = \cot x \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting the cotangent and cosecant in terms of sine and cosine: \[ \cot\left(\frac{x}{2}\right) = \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}, \quad \csc\left(\frac{x}{2}\right) = \frac{1}{\sin\left(\frac{x}{2}\right)}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve : 2+tan x. cot\ (x)/(2)+cot x. tan\ (x)/(2)=0 .

Solve tan2x=-cot (x+pi/3)

Solve the equation cot((theta )/(2))-"cosec"((theta)/2)=cot theta

If cos 3x= 0 and x is acute find the value of : cot^(2) x- cosec ^(2)x

Solve 2 cot 2x -3 cot 3x = tan 2x .

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Solve tan2x=-cot(x+pi/3)

S=cosecx+cosec 2x+cosec 4x+…+cosec 2nx=cot(x/2)−cot2nx

int cot^(3) x. cosec^(2) x dx

int_(pi//6)^(pi//2) (" cosec x cot x")/(1+" cosec "^(2) x)dx