Home
Class 12
MATHS
Solve cot theta + tan theta=2 cosec thet...

Solve `cot theta + tan theta=2 cosec theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot \theta + \tan \theta = 2 \csc \theta \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting \( \cot \theta \), \( \tan \theta \), and \( \csc \theta \) in terms of sine and cosine: \[ \cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: \[ \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} = 2 \cdot \frac{1}{\sin \theta} \] ### Step 2: Find a common denominator The left-hand side has two fractions, so we find a common denominator: \[ \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta} = \frac{2}{\sin \theta} \] ### Step 3: Use the Pythagorean identity We know from the Pythagorean identity that \( \sin^2 \theta + \cos^2 \theta = 1 \). Therefore, we can simplify the equation: \[ \frac{1}{\sin \theta \cos \theta} = \frac{2}{\sin \theta} \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ 1 = 2 \cos \theta \] ### Step 5: Solve for \( \cos \theta \) Rearranging the equation, we find: \[ \cos \theta = \frac{1}{2} \] ### Step 6: Find the general solution for \( \theta \) The cosine function equals \( \frac{1}{2} \) at specific angles: \[ \theta = \frac{\pi}{3} + 2n\pi \quad \text{and} \quad \theta = -\frac{\pi}{3} + 2n\pi \] where \( n \) is any integer. ### Final Solution Thus, the complete solution for \( \theta \) is: \[ \theta = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad \theta = -\frac{\pi}{3} + 2n\pi, \quad n \in \mathbb{Z} \]

To solve the equation \( \cot \theta + \tan \theta = 2 \csc \theta \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting \( \cot \theta \), \( \tan \theta \), and \( \csc \theta \) in terms of sine and cosine: \[ \cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve the general vlaue. cot theta + tan theta = 2 cosec theta

Prove that cot 2 theta + tan theta = cosec 2 theta

Solve: tan4 theta = tan2theta

Solve: cot\ theta/2-cottheta=cosec\ theta/2

If tan^2 theta = 1-e^2 then the value of sec theta + tan^3 theta cosec theta

Prove that cot theta-tan theta=2cot 2 theta .

If tan^2 theta= 1-e^2 prove that sec theta + tan^3 theta cosec theta = (2-e^2)^(3/2)

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + sec theta cosec theta

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

If cos theta = - 3/5 and pi lt theta lt (3pi)/2 , find the value of (sec theta - tan theta)/(cosec theta + cot theta)