Home
Class 12
MATHS
Solve cos theta+cos 2theta+cos 3theta=0....

Solve `cos theta+cos 2theta+cos 3theta=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta + \cos 2\theta + \cos 3\theta = 0 \), we will use trigonometric identities and algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the equation We start with the equation: \[ \cos \theta + \cos 2\theta + \cos 3\theta = 0 \] ### Step 2: Group terms We can group the terms as follows: \[ \cos \theta + \cos 3\theta + \cos 2\theta = 0 \] ### Step 3: Use the cosine addition formula Using the identity for the sum of cosines, we have: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Let \( A = \theta \) and \( B = 3\theta \): \[ \cos \theta + \cos 3\theta = 2 \cos\left(\frac{\theta + 3\theta}{2}\right) \cos\left(\frac{\theta - 3\theta}{2}\right) = 2 \cos(2\theta) \cos(\theta) \] Thus, we can rewrite the equation as: \[ 2 \cos(2\theta) \cos(\theta) + \cos 2\theta = 0 \] ### Step 4: Factor out \(\cos 2\theta\) Now, factor out \(\cos 2\theta\): \[ \cos 2\theta (2 \cos \theta + 1) = 0 \] ### Step 5: Set each factor to zero Now we can set each factor to zero: 1. \( \cos 2\theta = 0 \) 2. \( 2 \cos \theta + 1 = 0 \) ### Step 6: Solve \( \cos 2\theta = 0 \) The general solution for \( \cos x = 0 \) is: \[ x = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, for \( 2\theta \): \[ 2\theta = \frac{\pi}{2} + n\pi \implies \theta = \frac{\pi}{4} + \frac{n\pi}{2} \] ### Step 7: Solve \( 2 \cos \theta + 1 = 0 \) From \( 2 \cos \theta + 1 = 0 \): \[ 2 \cos \theta = -1 \implies \cos \theta = -\frac{1}{2} \] The general solution for \( \cos \theta = -\frac{1}{2} \) is: \[ \theta = \frac{2\pi}{3} + 2n\pi \quad \text{or} \quad \theta = \frac{4\pi}{3} + 2n\pi \] ### Step 8: Combine solutions Thus, the complete solution set is: 1. \( \theta = \frac{\pi}{4} + \frac{n\pi}{2} \) 2. \( \theta = \frac{2\pi}{3} + 2n\pi \) 3. \( \theta = \frac{4\pi}{3} + 2n\pi \) ### Final Answer The solutions to the equation \( \cos \theta + \cos 2\theta + \cos 3\theta = 0 \) are: \[ \theta = \frac{\pi}{4} + \frac{n\pi}{2}, \quad \theta = \frac{2\pi}{3} + 2n\pi, \quad \theta = \frac{4\pi}{3} + 2n\pi \quad (n \in \mathbb{Z}) \]

To solve the equation \( \cos \theta + \cos 2\theta + \cos 3\theta = 0 \), we will use trigonometric identities and algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the equation We start with the equation: \[ \cos \theta + \cos 2\theta + \cos 3\theta = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 4.2|6 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Solve: cos5theta=cos2theta

Solve cos theta+cos 3 theta-2 cos 2 theta=0 .

Solve the general vlaue. cos theta + cos 2 theta + cos 3 theta =0

Solve cos theta+cos 7 theta+cos 3theta+cos 5 theta=0 ,

Solve 2 sin theta cos theta = cos theta. ( 0^(@) < theta lt 360^(@)).

Find all value of theta , between 0 & pi , which satisfy the equation; cos theta * cos 2 theta * cos 3theta = 1/4 .

Solve: cos3theta+costheta=0

Solve: cos2theta=cos^(2)theta

Prove (cos 3theta+ 2 cos 5theta+ cos 7theta)/( cos theta+ 2 cos 3theta+ cos 5theta)= cos 2theta- sin 2theta tan 3theta .