Home
Class 12
MATHS
For the smallest positive values of xa n...

For the smallest positive values of `xa n dy ,` the equation `2(s inx+s in y)-2cos(x-y)=3` has a solution, then which of the following is/are true? `sin(x+y)/2=1` (b) `cos((x-y)/2)=1/2` number of ordered pairs `(x , y)` is 2 number of ordered pairs `(x , y)i s3`

A

`"sin" (x+y)/2=1`

B

`cos((x-y)/2)=1/2`

C

number of ordered pairs (x, y) is 2

D

number of ordered pairs (x, y) is 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2(\sin x + \sin y) - 2\cos(x - y) = 3 \) for the smallest positive values of \( x \) and \( y \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 2(\sin x + \sin y) - 2\cos(x - y) = 3 \] Dividing the entire equation by 2 gives: \[ \sin x + \sin y - \cos(x - y) = \frac{3}{2} \] ### Step 2: Use trigonometric identities Using the identity for the sum of sines: \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] We can rewrite the equation as: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) - \cos(x - y) = \frac{3}{2} \] ### Step 3: Rewrite \(\cos(x - y)\) Using the identity for cosine: \[ \cos(x - y) = 2\cos^2\left(\frac{x-y}{2}\right) - 1 \] Substituting this into the equation gives: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) - (2\cos^2\left(\frac{x-y}{2}\right) - 1) = \frac{3}{2} \] ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) + 1 - 2\cos^2\left(\frac{x-y}{2}\right) = \frac{3}{2} \] This simplifies to: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) - 2\cos^2\left(\frac{x-y}{2}\right) = \frac{1}{2} \] ### Step 5: Setting up conditions For the equation to have solutions, we analyze the conditions: 1. **For \( \sin\left(\frac{x+y}{2}\right) = 1 \)**: This implies: \[ \frac{x+y}{2} = \frac{\pi}{2} \implies x + y = \pi \] 2. **For \( \cos\left(\frac{x-y}{2}\right) = \frac{1}{2} \)**: This implies: \[ \frac{x-y}{2} = \frac{\pi}{3} \text{ or } \frac{5\pi}{3} \implies x - y = \frac{2\pi}{3} \text{ or } -\frac{2\pi}{3} \] ### Step 6: Solving the system of equations Now we have two equations: 1. \( x + y = \pi \) 2. \( x - y = \frac{2\pi}{3} \) Adding these equations: \[ 2x = \pi + \frac{2\pi}{3} \implies 2x = \frac{3\pi + 2\pi}{3} = \frac{5\pi}{3} \implies x = \frac{5\pi}{6} \] Substituting \( x \) back into \( x + y = \pi \): \[ \frac{5\pi}{6} + y = \pi \implies y = \pi - \frac{5\pi}{6} = \frac{\pi}{6} \] ### Step 7: Finding ordered pairs We can also consider the negative solution for \( x - y \): 1. \( x - y = -\frac{2\pi}{3} \) Adding this to \( x + y = \pi \): \[ 2x = \pi - \frac{2\pi}{3} \implies 2x = \frac{3\pi - 2\pi}{3} = \frac{\pi}{3} \implies x = \frac{\pi}{6} \] Substituting back gives: \[ \frac{\pi}{6} + y = \pi \implies y = \frac{5\pi}{6} \] ### Conclusion Thus, the ordered pairs \( (x, y) \) are: 1. \( \left(\frac{5\pi}{6}, \frac{\pi}{6}\right) \) 2. \( \left(\frac{\pi}{6}, \frac{5\pi}{6}\right) \) ### Final Answers - \( \sin\left(\frac{x+y}{2}\right) = 1 \) is **True**. - \( \cos\left(\frac{x-y}{2}\right) = \frac{1}{2} \) is **True**. - The number of ordered pairs \( (x, y) \) is **2**.

To solve the equation \( 2(\sin x + \sin y) - 2\cos(x - y) = 3 \) for the smallest positive values of \( x \) and \( y \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 2(\sin x + \sin y) - 2\cos(x - y) = 3 \] Dividing the entire equation by 2 gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

For the smallest positive values of x \and\ y , the equation 2(sinx+sin y)-2cos(x-y)=3 has a solution, then which of the following is/are true? (a) sin(x+y)/2=1 (b) cos((x-y)/2)=1/2 (c)number of ordered pairs (x , y) is 2 (d)number of ordered pairs (x , y)i s3

Find the value of 'a' which the system of equation sin x * cos y=a^(2) and sin y* cos x =a have a solution

Find the number of real ordered pair(s) (x, y) for which: 16^(x^2+y) + 16^(x+y^2) = 1

Solve the following system of equations. sin x + cos y=1, cos 2x-cos 2y=1

2x+y=6 7x+2y=27 The system of equations above is satisfied by which of the following ordered pairs (x, y) ?

Find the number of ordered pairs of (x, y) satisfying the equation y = |sinx| and y = cos^(-1)(cosx) , where x in [-π, π]

The number of ordered pairs of integers (x,y) satisfying the equation x ^2+6x+y^2 =4 is

Find the number ordered pairs (x ,y)ifx ,y in {0,1,2,3, , 10}a n dif|x-y|> 5.

Find the number ordered pairs (x ,y)ifx ,y in {0,1,2,3, , 10}a n dif|x-y|> 5.

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Multiple correct type)
  1. The equation 2 sin^(2) (pi/2 cos^(2) x)=1-cos (pi sin 2x) is safisfied...

    Text Solution

    |

  2. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  3. For the smallest positive values of xa n dy , the equation 2(s inx+s i...

    Text Solution

    |

  4. For the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y) exactly one value of ...

    Text Solution

    |

  5. If x+y=pi//4 and tan x+tan y=1, then (n in Z)

    Text Solution

    |

  6. If x+y=2pi//3 and sin x//sin y=2, then the

    Text Solution

    |

  7. Let tanx-tan^2x >0 and |2sinx|<1 . Then the intersection of which of t...

    Text Solution

    |

  8. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  9. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  10. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  11. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  12. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  13. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  14. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  15. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  16. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  17. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  18. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  19. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  20. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |