Home
Class 12
MATHS
Let tanx-tan^2x >0 and |2sinx|<1 . Then ...

Let `tanx-tan^2x >0` and `|2sinx|<1` . Then the intersection of which of the following two sets satisfies both the inequalities?
`x > npi,n in Z` (b) `x > npi-pi/6,n in Z` `x

A

`x gt npi, n in Z`

B

`x gt npi-pi//6, n in Z`

C

`x lt n pi-pi//4, n in Z`

D

`x lt npi+pi//6, n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities \( \tan x - \tan^2 x > 0 \) and \( |2\sin x| < 1 \), we will break down the problem step by step. ### Step 1: Solve the inequality \( \tan x - \tan^2 x > 0 \) 1. **Rearranging the inequality**: \[ \tan x - \tan^2 x > 0 \] This can be factored as: \[ \tan x (1 - \tan x) > 0 \] 2. **Finding the critical points**: The critical points occur when \( \tan x = 0 \) or \( \tan x = 1 \). - \( \tan x = 0 \) gives \( x = n\pi \) for \( n \in \mathbb{Z} \) - \( \tan x = 1 \) gives \( x = \frac{\pi}{4} + n\pi \) for \( n \in \mathbb{Z} \) 3. **Testing intervals**: We will test the intervals determined by the critical points: - Interval 1: \( (-\infty, n\pi) \) - Interval 2: \( (n\pi, \frac{\pi}{4} + n\pi) \) - Interval 3: \( (\frac{\pi}{4} + n\pi, (n+1)\pi) \) We find that: - In Interval 1: \( \tan x < 0 \) (not valid) - In Interval 2: \( \tan x > 0 \) and \( 1 - \tan x > 0 \) (valid) - In Interval 3: \( \tan x > 1 \) (not valid) Thus, we conclude: \[ 0 < \tan x < 1 \implies 0 < x < \frac{\pi}{4} + n\pi \] ### Step 2: Solve the inequality \( |2\sin x| < 1 \) 1. **Rearranging the inequality**: \[ |2\sin x| < 1 \implies -1 < 2\sin x < 1 \] Dividing by 2: \[ -\frac{1}{2} < \sin x < \frac{1}{2} \] 2. **Finding the intervals**: - The inequality \( \sin x < \frac{1}{2} \) gives: \[ x < \frac{\pi}{6} + 2n\pi \quad \text{and} \quad x > \frac{5\pi}{6} + 2n\pi \] - The inequality \( \sin x > -\frac{1}{2} \) gives: \[ x > -\frac{\pi}{6} + 2n\pi \quad \text{and} \quad x < \frac{7\pi}{6} + 2n\pi \] Combining these, we have: \[ -\frac{\pi}{6} + 2n\pi < x < \frac{\pi}{6} + 2n\pi \] ### Step 3: Finding the intersection of the two sets 1. **From the first inequality**: \[ n\pi < x < n\pi + \frac{\pi}{4} \] 2. **From the second inequality**: \[ -\frac{\pi}{6} + 2n\pi < x < \frac{\pi}{6} + 2n\pi \] 3. **Finding the intersection**: We need to find \( x \) such that: \[ n\pi < x < n\pi + \frac{\pi}{4} \] and \[ -\frac{\pi}{6} + 2n\pi < x < \frac{\pi}{6} + 2n\pi \] The intersection will yield: \[ n\pi + \frac{\pi}{6} < x < n\pi + \frac{\pi}{4} \] ### Conclusion The valid intervals satisfying both inequalities are: - \( n\pi < x < n\pi + \frac{\pi}{4} \) - The options that satisfy these conditions are: - \( x > n\pi - \frac{\pi}{6} \) - \( x < n\pi + \frac{\pi}{6} \) Thus, the correct options are: - (a) \( x > n\pi \) - (d) \( x < n\pi + \frac{\pi}{6} \)

To solve the inequalities \( \tan x - \tan^2 x > 0 \) and \( |2\sin x| < 1 \), we will break down the problem step by step. ### Step 1: Solve the inequality \( \tan x - \tan^2 x > 0 \) 1. **Rearranging the inequality**: \[ \tan x - \tan^2 x > 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Let tanx-tan^2x >0 and |2sinx| npi,n in Z (b) x > npi-pi/6,n in Z x

Which of the following set of values of x satisfies the equation 2^(2sin^2x-3sinx+1)+2^(2-2sin^2x+3sinx)=9? (a) x=npi+-pi/6,n in I (b) x=npi+-pi/3, n in I (c) x=npi,n in I (d) x=2npi+pi/2,n in I

General solution for |sinx|=cosx is (a) 2npi+pi/4,\ n in I (b) 2npi+-pi/4, n in 1 (c) npi+pi/4,\ n in 1 (d) none of these

If cos^2x+cos^2 2x+cos^2 3x=1 then (a) x=(2n+1)pi/4,\ n in I (b) x=(2n+1)pi/2,\ n in I (c) x=npi+-\ pi/6,\ n in I (d) none of these

If 4sin^2theta=1, then the values of theta are 2npi+-pi/3,\ n in Z b. npi+-pi/3,\ n in Z c. npi+-pi/6,\ n in Z d. 2npi+-pi/6,\ n in Z

Consider the system of linear equations in x , ya n dz : ""(sin3theta)x-y+z=0 , (cos2theta)x+4y+3z=0 , 2x+7y+7z=0 Which of the following can be the value of theta for which the system has a non-trivial solution (A) npi+(-1)^npi/6,AAn in Z (B) npi+(-1)^npi/3,AAn in Z (C) npi+(-1)^npi/9,AAn in Z (D)none of these

The set of values of x satisfying the equation sin3alpha=4sinalphasin(x+alpha)sin(x-alpha) is (a) npi+-pi/4,AAn in Z (b) npi+-pi/3,AAn in Z (c) npi+-pi/9,AAn in Z (d) npi+-pi/(12),AAn in Z

If the vectors vec aa n d vec b are linearly idependent satisfying (sqrt(3)tantheta+1 )veca+(sqrt(3)s e ctheta-2) vec b=0, then the most general values of theta are a. npi-pi/6, n in Z b. 2npi+-(11pi)/6, n in Z c. npi+-pi/6, n in Z d. 2npi+(11pi)/6, n in Z

The general solution of the equation sin^(100)x-cos^(100)x=1 is (a) 2npi+pi/3,n in I (b) n pi+pi/2,n in I (c) npi+pi/4,n in I (d) 2npi=pi/3,n in I

The solution(s) of 4cos^2xsinx-2sin^2x=3sinx is/are npi; n in I (b) npi+9(-1)^npi/(10); n in I npi+(-1)^n(-(3pi)/(10)); n in I none of these

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Multiple correct type)
  1. If x+y=pi//4 and tan x+tan y=1, then (n in Z)

    Text Solution

    |

  2. If x+y=2pi//3 and sin x//sin y=2, then the

    Text Solution

    |

  3. Let tanx-tan^2x >0 and |2sinx|<1 . Then the intersection of which of t...

    Text Solution

    |

  4. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  5. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  6. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  7. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  8. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  9. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  10. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  11. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  12. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  13. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  14. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  15. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  16. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |

  17. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  18. The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x ...

    Text Solution

    |

  19. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  20. The equation 2sin^3theta+(2lambda-3)sin^2theta-(3lambda+2)sintheta-2la...

    Text Solution

    |