Home
Class 12
MATHS
If 0 le x le 2pi, then 2^(cosec^(2) x) ...

If `0 le x le 2pi`, then `2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)`

A

is satisfied by exactly one value of y

B

is satisfied by exactly two value of x

C

is satisfied by x for which `cos x=0`

D

is satisfied by x for which `sin x=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2^{\csc^2 x} \sqrt{\frac{1}{2}y^2 - y + 1} \leq \sqrt{2} \) for \( 0 \leq x \leq 2\pi \), we will break it down step by step. ### Step 1: Rewrite the Inequality We start with the given inequality: \[ 2^{\csc^2 x} \sqrt{\frac{1}{2}y^2 - y + 1} \leq \sqrt{2} \] We can square both sides to eliminate the square root (noting that both sides are non-negative): \[ (2^{\csc^2 x})^2 \left(\frac{1}{2}y^2 - y + 1\right) \leq 2 \] This simplifies to: \[ 2^{2\csc^2 x} \left(\frac{1}{2}y^2 - y + 1\right) \leq 2 \] ### Step 2: Isolate the Terms Next, we can divide both sides by 2 (since 2 is positive): \[ 2^{2\csc^2 x - 1} \left(\frac{1}{2}y^2 - y + 1\right) \leq 1 \] ### Step 3: Analyze the Terms Now we analyze the term \( 2^{2\csc^2 x - 1} \). Since \( \csc^2 x = \frac{1}{\sin^2 x} \), we have: \[ 2^{2\csc^2 x - 1} = 2^{\frac{2}{\sin^2 x} - 1} \] This term is always greater than or equal to 1 because \( \csc^2 x \geq 1 \) for all \( x \) in the domain. ### Step 4: Set Up Conditions For the inequality \( 2^{2\csc^2 x - 1} \left(\frac{1}{2}y^2 - y + 1\right) \leq 1 \) to hold, we need: \[ \frac{1}{2}y^2 - y + 1 \leq \frac{1}{2^{2\csc^2 x - 1}} \] This means we need to find values of \( y \) such that the left-hand side is less than or equal to the right-hand side. ### Step 5: Solve the Quadratic Inequality The quadratic \( \frac{1}{2}y^2 - y + 1 \) can be analyzed by finding its vertex and roots. The vertex occurs at: \[ y = -\frac{b}{2a} = \frac{1}{2 \cdot \frac{1}{2}} = 1 \] Evaluating at \( y = 1 \): \[ \frac{1}{2}(1)^2 - (1) + 1 = \frac{1}{2} - 1 + 1 = \frac{1}{2} \] Since the quadratic opens upwards, the minimum value is \( \frac{1}{2} \) at \( y = 1 \). ### Step 6: Set Conditions on \( y \) For the inequality to hold: \[ \frac{1}{2} \leq \frac{1}{2^{2\csc^2 x - 1}} \] This implies: \[ 2^{2\csc^2 x - 1} \geq 2 \implies 2\csc^2 x - 1 \geq 1 \implies 2\csc^2 x \geq 2 \implies \csc^2 x \geq 1 \] This is always true, so we need to find specific values of \( x \). ### Step 7: Find Values of \( x \) The equality holds when: \[ 2^{\csc^2 x} = 2 \implies \csc^2 x = 1 \implies \sin x = 1 \text{ or } -1 \] This occurs at: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] ### Step 8: Conclusion Thus, the solution to the inequality is: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \quad \text{and} \quad y = 1 \]

To solve the inequality \( 2^{\csc^2 x} \sqrt{\frac{1}{2}y^2 - y + 1} \leq \sqrt{2} \) for \( 0 \leq x \leq 2\pi \), we will break it down step by step. ### Step 1: Rewrite the Inequality We start with the given inequality: \[ 2^{\csc^2 x} \sqrt{\frac{1}{2}y^2 - y + 1} \leq \sqrt{2} \] We can square both sides to eliminate the square root (noting that both sides are non-negative): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

x - y le 2

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

The area under the curve y=|cosx-sinx|, 0 le x le pi/2 , and above x-axis is: (A) 2sqrt(2)+2 (B) 0 (C) 2sqrt(2)-2 (D) 2sqrt(2)

Show that 0le3sin sqrt(pi^2/16-x^2) le 3/sqrt(2)

If 0 le x, y le 2 pi "and cos"x + "cos" y = -2, " then "cos" (x+y)=

If cos ^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where -1 le x le 1, -2 le y le 2, x le (y)/(2) , then for all x,y, 4x^(2) - 4xy cos alpha + y^(2) is equal to

The number of solution of sec^(2) theta + cosec^(2) theta+2 cosec^(2) theta=8, 0 le theta le pi//2 is

Prove that 4le int_(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30 .

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Multiple correct type)
  1. Let tanx-tan^2x >0 and |2sinx|<1 . Then the intersection of which of t...

    Text Solution

    |

  2. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  3. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  4. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  5. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  6. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  7. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  8. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  9. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  10. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  11. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  12. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  13. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  14. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |

  15. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  16. The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x ...

    Text Solution

    |

  17. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  18. The equation 2sin^3theta+(2lambda-3)sin^2theta-(3lambda+2)sintheta-2la...

    Text Solution

    |

  19. The system of equations tan x=a cot x, tan 2x=b cos y

    Text Solution

    |

  20. (cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4, then y can take value...

    Text Solution

    |