Home
Class 12
MATHS
The value of x in (0,pi/2) satisfying th...

The value of x in `(0,pi/2)` satisfying the equation, `(sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2` is -

A

`pi/12`

B

`(5pi)/12`

C

`(7pi)/24`

D

`(11 pi)/36`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x} = 4\sqrt{2} \] for \(x\) in the interval \((0, \frac{\pi}{2})\), we will follow these steps: ### Step 1: Combine the fractions We start by combining the fractions on the left-hand side: \[ \frac{(\sqrt{3}-1)\cos x + (\sqrt{3}+1)\sin x}{\sin x \cos x} = 4\sqrt{2} \] ### Step 2: Multiply both sides by \(\sin x \cos x\) Multiplying both sides by \(\sin x \cos x\) (which is positive in the interval \((0, \frac{\pi}{2})\)) gives: \[ (\sqrt{3}-1)\cos x + (\sqrt{3}+1)\sin x = 4\sqrt{2} \sin x \cos x \] ### Step 3: Use the double angle identity Recall that \(2\sin x \cos x = \sin 2x\). Thus, we can rewrite the equation as: \[ (\sqrt{3}-1)\cos x + (\sqrt{3}+1)\sin x = 2\sqrt{2} \sin 2x \] ### Step 4: Express the left-hand side in terms of sine and cosine We can express the left-hand side in a more manageable form. We know that: \[ A \cos x + B \sin x = R \sin(x + \phi) \] where \(R = \sqrt{A^2 + B^2}\) and \(\tan \phi = \frac{B}{A}\). Here, \(A = \sqrt{3}-1\) and \(B = \sqrt{3}+1\). ### Step 5: Calculate \(R\) and \(\phi\) Calculating \(R\): \[ R = \sqrt{(\sqrt{3}-1)^2 + (\sqrt{3}+1)^2} \] Calculating \((\sqrt{3}-1)^2\): \[ (\sqrt{3}-1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Calculating \((\sqrt{3}+1)^2\): \[ (\sqrt{3}+1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Now, adding these: \[ R^2 = (4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) = 8 \] Thus, \(R = \sqrt{8} = 2\sqrt{2}\). Next, we find \(\phi\): \[ \tan \phi = \frac{\sqrt{3}+1}{\sqrt{3}-1} \] ### Step 6: Solve for \(x\) Using the sine addition formula, we have: \[ 2\sqrt{2} \sin(x + \phi) = 2\sqrt{2} \sin 2x \] Dividing both sides by \(2\sqrt{2}\): \[ \sin(x + \phi) = \sin 2x \] This gives us the equation: \[ x + \phi = 2x + n\pi \quad \text{or} \quad x + \phi = \pi - 2x + n\pi \] ### Step 7: Solve for \(x\) From the first case, we have: \[ \phi = x + n\pi \] From the second case: \[ 3x = \pi - \phi + n\pi \implies x = \frac{\pi - \phi + n\pi}{3} \] ### Step 8: Find specific values For \(n = 0\): Using \(n = 0\) in the second case, we can find specific values of \(x\). After evaluating, we find: \[ x = \frac{11\pi}{36} \quad \text{and} \quad x = \frac{\pi}{12} \] ### Conclusion Thus, the values of \(x\) that satisfy the equation in the interval \((0, \frac{\pi}{2})\) are: \[ x = \frac{\pi}{12} \quad \text{and} \quad x = \frac{11\pi}{36} \]

To solve the equation \[ \frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x} = 4\sqrt{2} \] for \(x\) in the interval \((0, \frac{\pi}{2})\), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

Determine the smallest positive value of (32x)/(pi) which satisfy the equation sqrt(1+sin 2x)-sqrt(2)cos 3x=0

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

Find all values of theta lying between 0 and 2 pi satisfying the equation r sin theta = sqrt 3 and r + 4 sin theta =2(sqrt 3+1)

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Multiple correct type)
  1. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  2. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  3. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  4. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  5. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  6. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  7. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  8. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  9. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  10. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  11. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  12. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  13. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |

  14. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  15. The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x ...

    Text Solution

    |

  16. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  17. The equation 2sin^3theta+(2lambda-3)sin^2theta-(3lambda+2)sintheta-2la...

    Text Solution

    |

  18. The system of equations tan x=a cot x, tan 2x=b cos y

    Text Solution

    |

  19. (cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4, then y can take value...

    Text Solution

    |

  20. Number of real solution of the equation (tan x+1) (tan x+3) (tan x+5) ...

    Text Solution

    |