Home
Class 12
MATHS
If 0 lt x lt 2 pi and |cos x| le sin x, ...

If `0 lt x lt 2 pi` and `|cos x| le sin x`, then

A

the set of all values of x is `[pi/4, (3pi)/4]`

B

the number of solutions that are integral multiple of `pi/2` is four

C

the sum of the largest and the smallest solution is `pi`

D

the set of all values of x is `x in [pi/4, pi/2) uu (pi/2, (3pi)/4]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( | \cos x | \leq \sin x \) for \( 0 < x < 2\pi \), we will analyze the inequality step by step. ### Step 1: Understanding the Inequality The inequality \( | \cos x | \leq \sin x \) can be interpreted as two separate inequalities: 1. \( \cos x \leq \sin x \) 2. \( -\cos x \leq \sin x \) (which is equivalent to \( \cos x \geq -\sin x \)) ### Step 2: Solve the First Inequality \( \cos x \leq \sin x \) To solve \( \cos x \leq \sin x \), we can rearrange it: \[ \cos x - \sin x \leq 0 \] This can be rewritten as: \[ \tan x \geq 1 \] This inequality holds true when: \[ x \in \left[\frac{\pi}{4} + n\pi, \frac{5\pi}{4} + n\pi\right] \quad \text{for integers } n \] Within the interval \( 0 < x < 2\pi \), this gives us: \[ x \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \] ### Step 3: Solve the Second Inequality \( -\cos x \leq \sin x \) Rearranging gives: \[ \cos x + \sin x \geq 0 \] This can be rewritten as: \[ \tan x \geq -1 \] This inequality holds true when: \[ x \in \left[-\frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi\right] \quad \text{for integers } n \] Within the interval \( 0 < x < 2\pi \), this gives us: \[ x \in \left[\frac{3\pi}{4}, \frac{7\pi}{4}\right] \] ### Step 4: Find the Intersection of the Two Intervals Now we need to find the intersection of the two intervals: 1. From \( \cos x \leq \sin x \): \( x \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \) 2. From \( -\cos x \leq \sin x \): \( x \in \left[\frac{3\pi}{4}, \frac{7\pi}{4}\right] \) The intersection of these intervals is: \[ x \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \] ### Final Answer Thus, the solution to the inequality \( | \cos x | \leq \sin x \) for \( 0 < x < 2\pi \) is: \[ x \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \]

To solve the problem where \( | \cos x | \leq \sin x \) for \( 0 < x < 2\pi \), we will analyze the inequality step by step. ### Step 1: Understanding the Inequality The inequality \( | \cos x | \leq \sin x \) can be interpreted as two separate inequalities: 1. \( \cos x \leq \sin x \) 2. \( -\cos x \leq \sin x \) (which is equivalent to \( \cos x \geq -\sin x \)) ### Step 2: Solve the First Inequality \( \cos x \leq \sin x \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

If 0 lt x lt pi/2 then

If 0 lt x lt pi /2 then

If 0 lt x lt pi/4 and cos x+sin x=5/4 , find the numerical value of (4(cos x- sin x))/sqrt(7) , is

If 0 le x le 2pi and sin x lt 0 , which of the following must be true ? I. cos x lt 0 II. csc x lt 0 III. |sin x + cos x|gt 0

If 0 lt x lt (pi)/(2) and cos x = 0.34 , what is the value of sin ((x)/(2)) ?

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

If 0 lt x lt (pi)/(2) and tan x = (a)/(2) , then cos x =

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

If 0lt x lt 90^(@) and sin x=0.525 , what is the value of cos((x)/(3))

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Multiple correct type)
  1. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  2. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  3. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  4. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  5. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  6. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  7. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  8. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  9. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  10. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  11. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  12. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  13. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |

  14. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  15. The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x ...

    Text Solution

    |

  16. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  17. The equation 2sin^3theta+(2lambda-3)sin^2theta-(3lambda+2)sintheta-2la...

    Text Solution

    |

  18. The system of equations tan x=a cot x, tan 2x=b cos y

    Text Solution

    |

  19. (cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4, then y can take value...

    Text Solution

    |

  20. Number of real solution of the equation (tan x+1) (tan x+3) (tan x+5) ...

    Text Solution

    |