Home
Class 12
MATHS
The expression cos 3 theta + sin 3 theta...

The expression `cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin theta- cos theta)` is positive for all `theta` in

A

`(2 n pi-(3pi)/4, 2npi+pi/4), n in Z`

B

`(2npi-pi/4, 2npi +pi/6), n in Z`

C

`(2npi-pi/3, 2npi +pi/3), n in Z`

D

`(2npi-pi/4, 2npi+(3pi)/4), n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 3\theta + \sin 3\theta + (2\sin 2\theta - 3)(\sin \theta - \cos \theta) \) and determine for which values of \( \theta \) it is positive, we will follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know the formulas for \( \cos 3\theta \), \( \sin 3\theta \), and \( \sin 2\theta \): - \( \cos 3\theta = 4\cos^3\theta - 3\cos\theta \) - \( \sin 3\theta = 3\sin\theta - 4\sin^3\theta \) - \( \sin 2\theta = 2\sin\theta\cos\theta \) Substituting these into the expression gives: \[ \cos 3\theta + \sin 3\theta = (4\cos^3\theta - 3\cos\theta) + (3\sin\theta - 4\sin^3\theta) \] Thus, the expression becomes: \[ (4\cos^3\theta - 3\cos\theta + 3\sin\theta - 4\sin^3\theta) + (2(2\sin\theta\cos\theta) - 3)(\sin\theta - \cos\theta) \] ### Step 2: Simplify the expression Combining the terms, we can rewrite the expression as: \[ 4\cos^3\theta - 4\sin^3\theta + 3\sin\theta - 3\cos\theta + 4\sin\theta\cos\theta - 3(\sin\theta - \cos\theta) \] This simplifies to: \[ 4(\cos^3\theta - \sin^3\theta) + 4\sin\theta\cos\theta - 6\sin\theta + 3\cos\theta \] ### Step 3: Factor the expression Notice that \( \cos^3\theta - \sin^3\theta \) can be factored using the difference of cubes: \[ \cos^3\theta - \sin^3\theta = (\cos\theta - \sin\theta)(\cos^2\theta + \cos\theta\sin\theta + \sin^2\theta) \] Since \( \cos^2\theta + \sin^2\theta = 1 \), we have: \[ \cos^3\theta - \sin^3\theta = (\cos\theta - \sin\theta)(1 + \cos\theta\sin\theta) \] Thus, the expression can be rewritten as: \[ 4(\cos\theta - \sin\theta)(1 + \cos\theta\sin\theta) + 4\sin\theta\cos\theta - 6\sin\theta + 3\cos\theta \] ### Step 4: Analyze the positivity of the expression For the expression to be positive, we need to analyze the critical points where \( \cos\theta - \sin\theta = 0 \). This occurs when: \[ \tan\theta = 1 \quad \Rightarrow \quad \theta = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 5: Determine the intervals Now, we need to check the intervals around \( \theta = \frac{\pi}{4} \): - For \( \theta < \frac{\pi}{4} \), \( \cos\theta > \sin\theta \) and the expression is positive. - For \( \theta > \frac{\pi}{4} \), \( \sin\theta > \cos\theta \) and we need to check if the expression remains positive. ### Conclusion The expression is positive when \( \cos\theta - \sin\theta > 0 \), which occurs in the intervals: \[ \theta \in \left(2n\pi, 2n\pi + \frac{\pi}{4}\right) \cup \left(2n\pi + \frac{3\pi}{4}, 2(n+1)\pi\right), \quad n \in \mathbb{Z} \]

To solve the expression \( \cos 3\theta + \sin 3\theta + (2\sin 2\theta - 3)(\sin \theta - \cos \theta) \) and determine for which values of \( \theta \) it is positive, we will follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know the formulas for \( \cos 3\theta \), \( \sin 3\theta \), and \( \sin 2\theta \): - \( \cos 3\theta = 4\cos^3\theta - 3\cos\theta \) - \( \sin 3\theta = 3\sin\theta - 4\sin^3\theta \) - \( \sin 2\theta = 2\sin\theta\cos\theta \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

Knowledge Check

  • sin^(3)theta + sin theta - sin theta cos^(2)theta =

    A
    0
    B
    `sin theta`
    C
    `sin 2 theta`
    D
    `2sin^(3)theta`
  • Similar Questions

    Explore conceptually related problems

    Prove that (sin 3 theta)/( sin theta) - (cos 3 theta)/(cos theta) = 2

    Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

    1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

    Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

    Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

    Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

    Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta