Home
Class 12
MATHS
If xa n dy are positive acute angles suc...

If `xa n dy` are positive acute angles such that `(x+y)` and `(x-y)` satisfy the equation `tan^2theta-4tantheta+1=0,` then `x=pi/6` (b) `y=pi/4` (c) `y=pi/6` (d) `y=pi/4`

A

`x=pi/6`

B

`y=pi/4`

C

`y=pi/6`

D

`x=pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and the conditions provided. Let's break down the steps: ### Step 1: Understand the given equation We are given that \( x+y \) and \( x-y \) satisfy the equation: \[ \tan^2 \theta - 4 \tan \theta + 1 = 0 \] ### Step 2: Find the roots of the equation We can use the quadratic formula to find the roots of the equation \( a = 1, b = -4, c = 1 \): \[ \tan \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values: \[ \tan \theta = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \] ### Step 3: Assign the roots to \( \tan(x+y) \) and \( \tan(x-y) \) Let: \[ \tan(x+y) = 2 + \sqrt{3} \quad \text{and} \quad \tan(x-y) = 2 - \sqrt{3} \] ### Step 4: Use the tangent addition formula Using the tangent addition formula: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] We can express \( \tan(2x) \) as: \[ \tan(2x) = \tan(x+y) + \tan(x-y) = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] And the product: \[ \tan(x+y) \tan(x-y) = (2 + \sqrt{3})(2 - \sqrt{3}) = 4 - 3 = 1 \] ### Step 5: Substitute into the tangent formula Now substituting into the tangent addition formula: \[ \tan(2x) = \frac{\tan(x+y) + \tan(x-y)}{1 - \tan(x+y) \tan(x-y)} = \frac{4}{1 - 1} = \frac{4}{0} \] This implies that \( \tan(2x) \) is undefined, which occurs when \( 2x = \frac{\pi}{2} + n\pi \) for some integer \( n \). For the acute angles, we take: \[ 2x = \frac{\pi}{2} \implies x = \frac{\pi}{4} \] ### Step 6: Find \( y \) Now we can find \( y \) using the values of \( \tan(x+y) \) and \( \tan(x-y) \): Using the equation: \[ \tan(x+y) = 2 + \sqrt{3} \implies x+y = \frac{\pi}{4} + y \] And since \( \tan(x-y) = 2 - \sqrt{3} \): \[ x-y = \frac{\pi}{4} - y \] ### Step 7: Solve for \( y \) Using the equations: 1. \( x + y = \frac{\pi}{4} + y = \tan^{-1}(2 + \sqrt{3}) \) 2. \( x - y = \frac{\pi}{4} - y = \tan^{-1}(2 - \sqrt{3}) \) We can solve for \( y \): From the first equation, we can use the known values of \( \tan^{-1}(2 + \sqrt{3}) \) and \( \tan^{-1}(2 - \sqrt{3}) \) to find \( y \). By solving, we find: \[ y = \frac{\pi}{6} \] ### Final Answer Thus, the values are: - \( x = \frac{\pi}{4} \) - \( y = \frac{\pi}{6} \) ### Conclusion The correct option for \( y \) is \( \frac{\pi}{6} \).

To solve the problem, we need to analyze the given equation and the conditions provided. Let's break down the steps: ### Step 1: Understand the given equation We are given that \( x+y \) and \( x-y \) satisfy the equation: \[ \tan^2 \theta - 4 \tan \theta + 1 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Linked comprehension type)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Numerical value type)|21 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|90 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(cottheta)=2\ theta , then theta= (a) +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these

The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0 at the origin intersect at an angle theta equal to (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The angle between the tangents to the parabola y^2=4a x at the points where it intersects with the line x-y-a=0 is (a) pi/3 (b) pi/4 (c) pi (d) pi/2

If tantheta=1/2a n dt a nvarphi=1/3, then the value of theta+varphi is pi/6 (b) pi (c) 0 (d) pi/4

The angle of intersection of the parabola y^2=4\ a x and x^2=4a y at the origin is (a) pi//6 (b) pi//3 (c) pi//2 (d) pi//4

The angles at which the circles (x-1)^2+y^2=10a n dx^2+(y-2)^2=5 intersect is pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If sinx+cosx=sqrt(y+1/y) for x in [0,pi] , then (a) x=pi/4 (b) y=0 (c) y=1 (d) x=(3pi)/4

The angle subtended by common tangents of two ellipses 4(x-4)^2+25 y^2=100a n d4(x+1)^2+y^2 =4 at the origin is pi/3 (b) pi/4 (c) pi/6 (d) pi/2

The angle subtended by common tangents of two ellipses 4(x-4)^2+25 y^2=100a n d4(x+1)^2+y^2 at the origin is pi/3 (b) pi/4 (c) pi/6 (d) pi/2

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= (a) pi/6 (b) pi/3 (c) pi/2 (d) -pi/3

CENGAGE ENGLISH-TRIGONOMETRIC EQUATIONS-Exercises (Multiple correct type)
  1. If cos(x+pi/3)+cos x=a has real solutions, then number of integral val...

    Text Solution

    |

  2. If 0 le x le 2pi, then 2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2...

    Text Solution

    |

  3. If the equation sin^2 x-a sin x + b = 0 has only one solution in (0, p...

    Text Solution

    |

  4. If (cos e c^2theta-4)x^2+(cottheta+sqrt(3))x+cos^2(3pi)/2=0 holds true...

    Text Solution

    |

  5. If (sinalpha)x^2-2x+bgeq2, for all real values of xlt=1a n dalpha in (...

    Text Solution

    |

  6. The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (...

    Text Solution

    |

  7. If cos3theta=cos3alpha, then the value of sintheta can be given by +-s...

    Text Solution

    |

  8. Which of the following sets can be the subset of the general solution ...

    Text Solution

    |

  9. The values of x1 between 0 and 2pi , satisfying the equation cos3x+cos...

    Text Solution

    |

  10. Which of the following set of values of x satisfies the equation 2^((2...

    Text Solution

    |

  11. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  12. The expression cos 3 theta + sin 3 theta + (2 sin 2 theta-3) (sin thet...

    Text Solution

    |

  13. The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) ...

    Text Solution

    |

  14. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  15. The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x ...

    Text Solution

    |

  16. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  17. The equation 2sin^3theta+(2lambda-3)sin^2theta-(3lambda+2)sintheta-2la...

    Text Solution

    |

  18. The system of equations tan x=a cot x, tan 2x=b cos y

    Text Solution

    |

  19. (cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4, then y can take value...

    Text Solution

    |

  20. Number of real solution of the equation (tan x+1) (tan x+3) (tan x+5) ...

    Text Solution

    |