Home
Class 12
MATHS
The number of values of theta in the int...

The number of values of `theta` in the interval `[-pi/2,pi/2]` and `theta!=(npi)/5` is where ` n=0,+-1,+-2` and `tantheta=cot(5theta)` and `sin(2theta)=cos(4theta)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \theta \) in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) such that \( \theta \neq \frac{n\pi}{5} \) for \( n = 0, \pm 1, \pm 2 \), and satisfy the equations \( \tan \theta = \cot(5\theta) \) and \( \sin(2\theta) = \cos(4\theta) \). ### Step 1: Solve \( \tan \theta = \cot(5\theta) \) We can rewrite \( \cot(5\theta) \) as \( \frac{1}{\tan(5\theta)} \). Thus, we have: \[ \tan \theta = \frac{1}{\tan(5\theta)} \] This implies: \[ \tan \theta \tan(5\theta) = 1 \] ### Step 2: Use the identity \( \tan A \tan B = 1 \) From the identity \( \tan A \tan B = 1 \), we can write: \[ \theta + 5\theta = \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z}) \] This simplifies to: \[ 6\theta = \frac{\pi}{2} + k\pi \] Thus: \[ \theta = \frac{\pi}{12} + \frac{k\pi}{6} \] ### Step 3: Find values of \( \theta \) in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) We will check for integer values of \( k \) to find \( \theta \): - For \( k = -1 \): \[ \theta = \frac{\pi}{12} - \frac{\pi}{6} = \frac{\pi}{12} - \frac{2\pi}{12} = -\frac{\pi}{12} \] - For \( k = 0 \): \[ \theta = \frac{\pi}{12} \] - For \( k = 1 \): \[ \theta = \frac{\pi}{12} + \frac{\pi}{6} = \frac{\pi}{12} + \frac{2\pi}{12} = \frac{3\pi}{12} = \frac{\pi}{4} \] - For \( k = 2 \): \[ \theta = \frac{\pi}{12} + \frac{2\pi}{6} = \frac{\pi}{12} + \frac{4\pi}{12} = \frac{5\pi}{12} \] Thus, the possible values of \( \theta \) from this equation are: \[ -\frac{\pi}{12}, \frac{\pi}{12}, \frac{\pi}{4}, \frac{5\pi}{12} \] ### Step 4: Solve \( \sin(2\theta) = \cos(4\theta) \) Using the identity \( \sin(2\theta) = \cos(4\theta) \), we can rewrite this as: \[ \sin(2\theta) = \sin\left(\frac{\pi}{2} - 4\theta\right) \] This gives us: \[ 2\theta = \frac{\pi}{2} - 4\theta + n\pi \quad (n \in \mathbb{Z}) \] Rearranging gives: \[ 6\theta = \frac{\pi}{2} + n\pi \] Thus: \[ \theta = \frac{\pi}{12} + \frac{n\pi}{6} \] ### Step 5: Find values of \( \theta \) in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) Repeating the same process as before: - For \( n = -1 \): \[ \theta = \frac{\pi}{12} - \frac{\pi}{6} = -\frac{\pi}{12} \] - For \( n = 0 \): \[ \theta = \frac{\pi}{12} \] - For \( n = 1 \): \[ \theta = \frac{\pi}{12} + \frac{\pi}{6} = \frac{3\pi}{12} = \frac{\pi}{4} \] - For \( n = 2 \): \[ \theta = \frac{\pi}{12} + \frac{2\pi}{6} = \frac{5\pi}{12} \] ### Step 6: Combine results and exclude \( \theta \neq \frac{n\pi}{5} \) The possible values of \( \theta \) are: \[ -\frac{\pi}{12}, \frac{\pi}{12}, \frac{\pi}{4}, \frac{5\pi}{12} \] Now, we need to check if any of these values are equal to \( \frac{n\pi}{5} \) for \( n = 0, \pm 1, \pm 2 \): - \( \frac{0\pi}{5} = 0 \) - \( \frac{1\pi}{5} = \frac{\pi}{5} \) - \( \frac{-1\pi}{5} = -\frac{\pi}{5} \) - \( \frac{2\pi}{5} = \frac{2\pi}{5} \) - \( \frac{-2\pi}{5} = -\frac{2\pi}{5} \) None of the values \( -\frac{\pi}{12}, \frac{\pi}{12}, \frac{\pi}{4}, \frac{5\pi}{12} \) match \( \frac{n\pi}{5} \). ### Final Answer Thus, the number of valid values of \( \theta \) in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) is **4**.

To solve the problem, we need to find the values of \( \theta \) in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) such that \( \theta \neq \frac{n\pi}{5} \) for \( n = 0, \pm 1, \pm 2 \), and satisfy the equations \( \tan \theta = \cot(5\theta) \) and \( \sin(2\theta) = \cos(4\theta) \). ### Step 1: Solve \( \tan \theta = \cot(5\theta) \) We can rewrite \( \cot(5\theta) \) as \( \frac{1}{\tan(5\theta)} \). Thus, we have: \[ \tan \theta = \frac{1}{\tan(5\theta)} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Exercises (Matrix Match Type)|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Linked comprehension type)|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES INTEGER TYPE|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

The number of values of theta in the interval (-(pi)/(2), (pi)/(2)) such that theta ne (n pi)/(5) " for n" = 0, +-1, +-2 " and tan" theta = "cot"5theta " as well as sin" 2 theta = "cos" 4theta , is

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

Minimum value of 3 sin theta+4 cos theta in the interval [0, (pi)/(2)] is :

The number of solution satisfying the equations tan 4theta=cot 5theta and sin 2theta=cos theta in [0,2pi] is

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi) is

The number of values of x lying in [-pi, pi] and satisfying 2sin^2theta = cos2theta and sin2theta+ 2cos2theta-costheta-1 = 0 is

The number of solutions of the equation sin 2 theta-2 cos theta +4 sin theta=4 in [0, 5pi] is equal to

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is