Home
Class 12
MATHS
Given a(1)cos alpha(1)+alpha(2)cos alpha...

Given `a_(1)cos alpha_(1)+alpha_(2)cos alpha_(2)+…+a_(n)cos alpha_(n)=0` and `a_(1)cos(alpha_(1)+theta)+a_(2)cos(alpha_(2)+theta)+…+a_(n)cos(alpha_(n)+theta)=0 (theta ne k pi)`, then the value of `a_(1)cos(alpha_(1)+lambda)+a_(2)cos(alpha_(2)+lambda)+…+a_(n)cos(alpha_(n)+lambda)` is

A

`theta-lambda`

B

`theta+lambda`

C

`lambda`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given equations and apply trigonometric identities. ### Step 1: Understand the Given Equations We have two equations: 1. \( a_1 \cos \alpha_1 + a_2 \cos \alpha_2 + \ldots + a_n \cos \alpha_n = 0 \) 2. \( a_1 \cos(\alpha_1 + \theta) + a_2 \cos(\alpha_2 + \theta) + \ldots + a_n \cos(\alpha_n + \theta) = 0 \) (where \( \theta \neq k\pi \)) ### Step 2: Apply the Cosine Addition Formula Using the cosine addition formula: \[ \cos(x + y) = \cos x \cos y - \sin x \sin y \] we can rewrite the second equation: \[ a_1 (\cos \alpha_1 \cos \theta - \sin \alpha_1 \sin \theta) + a_2 (\cos \alpha_2 \cos \theta - \sin \alpha_2 \sin \theta) + \ldots + a_n (\cos \alpha_n \cos \theta - \sin \alpha_n \sin \theta) = 0 \] ### Step 3: Factor Out Common Terms Factoring out the common terms: \[ \cos \theta (a_1 \cos \alpha_1 + a_2 \cos \alpha_2 + \ldots + a_n \cos \alpha_n) - \sin \theta (a_1 \sin \alpha_1 + a_2 \sin \alpha_2 + \ldots + a_n \sin \alpha_n) = 0 \] Since \( a_1 \cos \alpha_1 + a_2 \cos \alpha_2 + \ldots + a_n \cos \alpha_n = 0 \), we can substitute this into the equation: \[ \cos \theta \cdot 0 - \sin \theta (a_1 \sin \alpha_1 + a_2 \sin \alpha_2 + \ldots + a_n \sin \alpha_n) = 0 \] This simplifies to: \[ -\sin \theta (a_1 \sin \alpha_1 + a_2 \sin \alpha_2 + \ldots + a_n \sin \alpha_n) = 0 \] ### Step 4: Analyze the Result Since \( \theta \neq k\pi \) implies \( \sin \theta \neq 0 \), we conclude: \[ a_1 \sin \alpha_1 + a_2 \sin \alpha_2 + \ldots + a_n \sin \alpha_n = 0 \] ### Step 5: Evaluate the Expression for \( \lambda \) Now we need to evaluate: \[ a_1 \cos(\alpha_1 + \lambda) + a_2 \cos(\alpha_2 + \lambda) + \ldots + a_n \cos(\alpha_n + \lambda) \] Using the cosine addition formula again: \[ = a_1 (\cos \alpha_1 \cos \lambda - \sin \alpha_1 \sin \lambda) + a_2 (\cos \alpha_2 \cos \lambda - \sin \alpha_2 \sin \lambda) + \ldots + a_n (\cos \alpha_n \cos \lambda - \sin \alpha_n \sin \lambda) \] ### Step 6: Factor Out Common Terms Again Factoring out the common terms gives: \[ \cos \lambda (a_1 \cos \alpha_1 + a_2 \cos \alpha_2 + \ldots + a_n \cos \alpha_n) - \sin \lambda (a_1 \sin \alpha_1 + a_2 \sin \alpha_2 + \ldots + a_n \sin \alpha_n) \] Substituting the known results: \[ = \cos \lambda \cdot 0 - \sin \lambda \cdot 0 = 0 \] ### Conclusion Thus, the value of \( a_1 \cos(\alpha_1 + \lambda) + a_2 \cos(\alpha_2 + \lambda) + \ldots + a_n \cos(\alpha_n + \lambda) \) is: \[ \boxed{0} \]

To solve the problem step by step, we need to analyze the given equations and apply trigonometric identities. ### Step 1: Understand the Given Equations We have two equations: 1. \( a_1 \cos \alpha_1 + a_2 \cos \alpha_2 + \ldots + a_n \cos \alpha_n = 0 \) 2. \( a_1 \cos(\alpha_1 + \theta) + a_2 \cos(\alpha_2 + \theta) + \ldots + a_n \cos(\alpha_n + \theta) = 0 \) (where \( \theta \neq k\pi \)) ### Step 2: Apply the Cosine Addition Formula ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If Delta = |(cos (alpha_(1) - beta_(1)),cos (alpha_(1) - beta_(2)),cos (alpha_(1) - beta_(3))),(cos (alpha_(2) - beta_(1)),cos (alpha_(2) - beta_(2)),cos (alpha_(2) - beta_(3))),(cos (alpha_(3) - beta_(1)),cos (alpha_(3) - beta_(2)),cos (alpha_(3) - beta_(3)))|" then " Delta equals

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

cos alpha cos(60^(@) - alpha ) cos (60^(@) + alpha ) = 1/4 cos 3 alpha.

Prove that cos 4theta–cos 4alpha = 8(cos theta-cos alpha)(cos theta+ cos alpha )(cos theta -sin alpha)(cos theta+sin alpha)

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))