Home
Class 12
MATHS
(cos^2 3 3^(@)-cos^2 5 7^@)/(sin2 1^@-co...

`(cos^2 3 3^(@)-cos^2 5 7^@)/(sin2 1^@-cos2 1^@)=`

A

`(1)/(sqrt(2))`

B

`-(1)/(sqrt(2))`

C

`(sqrt(3))/(2)`

D

`-(sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos^2 33^\circ - \cos^2 57^\circ) / (\sin 21^\circ - \cos 21^\circ)\), we can follow these steps: ### Step 1: Simplify the Numerator We can use the identity \(a^2 - b^2 = (a + b)(a - b)\) to simplify the numerator: \[ \cos^2 33^\circ - \cos^2 57^\circ = (\cos 33^\circ + \cos 57^\circ)(\cos 33^\circ - \cos 57^\circ) \] ### Step 2: Simplify the Denominator For the denominator, we can rewrite it as: \[ \sin 21^\circ - \cos 21^\circ = \sin 21^\circ - \sin(90^\circ - 21^\circ) = \sin 21^\circ - \sin 69^\circ \] ### Step 3: Use the Cosine Addition Formula Now, we can apply the formula for the sum of cosines: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] For \(x = 33^\circ\) and \(y = 57^\circ\): \[ \cos 33^\circ + \cos 57^\circ = 2 \cos\left(\frac{33^\circ + 57^\circ}{2}\right) \cos\left(\frac{33^\circ - 57^\circ}{2}\right) \] Calculating the averages: \[ \frac{33^\circ + 57^\circ}{2} = 45^\circ, \quad \frac{33^\circ - 57^\circ}{2} = -12^\circ \] Thus, we have: \[ \cos 33^\circ + \cos 57^\circ = 2 \cos 45^\circ \cos(-12^\circ) = 2 \cdot \frac{1}{\sqrt{2}} \cdot \cos 12^\circ = \sqrt{2} \cos 12^\circ \] ### Step 4: Simplify \(\cos 33^\circ - \cos 57^\circ\) Using the cosine difference formula: \[ \cos x - \cos y = -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \] So, \[ \cos 33^\circ - \cos 57^\circ = -2 \sin\left(\frac{33^\circ + 57^\circ}{2}\right) \sin\left(\frac{33^\circ - 57^\circ}{2}\right) = -2 \sin 45^\circ \sin(-12^\circ \] This gives: \[ \cos 33^\circ - \cos 57^\circ = -2 \cdot \frac{1}{\sqrt{2}} \cdot (-\sin 12^\circ) = \frac{2 \sin 12^\circ}{\sqrt{2}} = \sqrt{2} \sin 12^\circ \] ### Step 5: Substitute Back into the Expression Now substituting back into the expression: \[ \frac{(\sqrt{2} \cos 12^\circ)(\sqrt{2} \sin 12^\circ)}{\sin 21^\circ - \sin 69^\circ} \] ### Step 6: Simplify the Denominator Using the sine difference formula: \[ \sin x - \sin y = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \] For \(x = 69^\circ\) and \(y = 21^\circ\): \[ \sin 21^\circ - \sin 69^\circ = -2 \cos 45^\circ \sin 24^\circ = -\sqrt{2} \sin 24^\circ \] ### Step 7: Final Expression Now we have: \[ \frac{2 \cos 12^\circ \sin 12^\circ}{-\sqrt{2} \sin 24^\circ} \] Using the identity \(\sin 24^\circ = 2 \sin 12^\circ \cos 12^\circ\): \[ = \frac{2 \cos 12^\circ \sin 12^\circ}{-\sqrt{2} \cdot 2 \sin 12^\circ \cos 12^\circ} = -\frac{1}{\sqrt{2}} = -\cos 45^\circ \] ### Final Answer Thus, the final answer is: \[ -\frac{1}{\sqrt{2}} \]

To solve the expression \((\cos^2 33^\circ - \cos^2 57^\circ) / (\sin 21^\circ - \cos 21^\circ)\), we can follow these steps: ### Step 1: Simplify the Numerator We can use the identity \(a^2 - b^2 = (a + b)(a - b)\) to simplify the numerator: \[ \cos^2 33^\circ - \cos^2 57^\circ = (\cos 33^\circ + \cos 57^\circ)(\cos 33^\circ - \cos 57^\circ) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

Find the value of [(sin^2 2 2^(@)+sin^2 6 8^(@))/(cos^2 2 2^(@)+cos^2 6 8^(@))+sin^2 6 3^(@)+cos6 3^(@)sin2 7^(@)]

Find the value of ((cos1^(@)+sin1^(@))(cos2^(@)+sin2^(@))(cos3^(@)+sin3^(@))...(cos 45^@sin45^@))/( cos1^(@)cos2^(@)cos3^(@)...cos45^(@))

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

(sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

(sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

(1- sin A - cos A)^2 = 2 (1-sin A) (1-cos A)

Show that : sin^8 A-cos^8 A = (sin^2 A - cos^2 A) (1-2 sin^2 A*cos^2 A)

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Prove that (cos 3A +2 cos 5 A + cos 7A)/( cos A + 2 cos 3 A + cos 5A) = cos 2 A - sin 2 A tan 3 A.

Prove that: (sin5A cos2A-sin6A\ cos A)/(sin A\ sin2A-cos2A cos3A)=t a n A