Home
Class 12
MATHS
The value of (2sin40^(@).sin50^(@).tan10...

The value of `(2sin40^(@).sin50^(@).tan10^(@))/(cos 80^(@))` is

A

`1//2`

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{2 \sin 40^\circ \cdot \sin 50^\circ \cdot \tan 10^\circ}{\cos 80^\circ}\), we can follow these steps: ### Step 1: Rewrite \(\tan 10^\circ\) We know that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Therefore, we can rewrite \(\tan 10^\circ\) as: \[ \tan 10^\circ = \frac{\sin 10^\circ}{\cos 10^\circ} \] ### Step 2: Substitute \(\tan 10^\circ\) into the expression Substituting this into the expression gives: \[ \frac{2 \sin 40^\circ \cdot \sin 50^\circ \cdot \frac{\sin 10^\circ}{\cos 10^\circ}}{\cos 80^\circ} \] ### Step 3: Simplify the expression This can be simplified to: \[ \frac{2 \sin 40^\circ \cdot \sin 50^\circ \cdot \sin 10^\circ}{\cos 10^\circ \cdot \cos 80^\circ} \] ### Step 4: Use the identity for \(\cos 80^\circ\) We know that \(\cos 80^\circ = \sin 10^\circ\) (since \(\cos(90^\circ - \theta) = \sin \theta\)). Thus, we can replace \(\cos 80^\circ\) in the expression: \[ \frac{2 \sin 40^\circ \cdot \sin 50^\circ \cdot \sin 10^\circ}{\cos 10^\circ \cdot \sin 10^\circ} \] ### Step 5: Cancel \(\sin 10^\circ\) Now we can cancel \(\sin 10^\circ\) from the numerator and denominator: \[ \frac{2 \sin 40^\circ \cdot \sin 50^\circ}{\cos 10^\circ} \] ### Step 6: Use the product-to-sum identities We can use the product-to-sum identities, specifically: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] Let \(A = 40^\circ\) and \(B = 50^\circ\): \[ 2 \sin 40^\circ \sin 50^\circ = \cos(40^\circ - 50^\circ) - \cos(40^\circ + 50^\circ) = \cos(-10^\circ) - \cos(90^\circ) \] Since \(\cos(-10^\circ) = \cos(10^\circ)\) and \(\cos(90^\circ) = 0\), we have: \[ 2 \sin 40^\circ \sin 50^\circ = \cos(10^\circ) \] ### Step 7: Substitute back into the expression Now substituting back into our expression gives: \[ \frac{\cos(10^\circ)}{\cos(10^\circ)} \] ### Step 8: Final simplification This simplifies to: \[ 1 \] Thus, the value of the expression \(\frac{2 \sin 40^\circ \cdot \sin 50^\circ \cdot \tan 10^\circ}{\cos 80^\circ}\) is \(1\). ### Final Answer The value is \(1\). ---

To solve the expression \(\frac{2 \sin 40^\circ \cdot \sin 50^\circ \cdot \tan 10^\circ}{\cos 80^\circ}\), we can follow these steps: ### Step 1: Rewrite \(\tan 10^\circ\) We know that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Therefore, we can rewrite \(\tan 10^\circ\) as: \[ \tan 10^\circ = \frac{\sin 10^\circ}{\cos 10^\circ} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The value of sin50^(@)-sin70^(@)+sin10^(@) is

The value of (sin10^(@)+sin20^(@))/(cos10^(@)+cos20^(@)) equals

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

Find the value of : (sin30^(@)-sin90^(@)+2cos0^(@))/(tan30^(@) times tan60^(@))

The value of (sin50^(@))/(sin130^(@)) is ….. .

Without using trigonometric tables , evaluate : (i) (sin40^(@))/(cos50^(@))+(3tan50^(@))/(cot40^(@)) (ii) (sec37^(@))/("cosec "53^(@))-(tan20^(@))/(cot70^(@)) (iii) (cos74^(@))/(sin16^(@))+(sin12^(@))/(cos78^(@))-sin18^(@)sec72^(@) (iv) sin35^(@)sec55^(@)+(4sec32^(@))/("cosec "58^(@))

Find the value of sin50^(@)-cos40^(@) .

Column I Column II The value of ((4+sec20^0)/(cosec20^0))^2 , is p. 1 The minimum value of (1+cos2x+8sin^2x)/(2sin2x),x(0,pi/2) is q. 2 The value of (8sin40^0dotsin50^0dottan10^0)/(cos80^0) r. 3 If (cos5A)/(cosA)+(sin5A)/(sinA)=a+bcos4A , then (a^2)/b is s. 4

Find the value of : " "(sin30^(@)-sin90^(@)+2cos0^(@))/(tan30^(@) times tan60^(@))

The value of sin50^(@) - sin70^(@)+sin10^(@) is equal to