Home
Class 12
MATHS
The value of cos 65^(@)cos 55^(@)cos5^(@...

The value of `cos 65^(@)cos 55^(@)cos5^(@)` is

A

`(sqrt(3)+1)/(8sqrt(2))`

B

`(sqrt(3)-1)/(8sqrt(2))`

C

`(sqrt(3)+1)/(4sqrt(2))`

D

`(sqrt(3)-1)/(4sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 65^\circ \cos 55^\circ \cos 5^\circ \), we can use trigonometric identities and formulas. Here’s a step-by-step solution: ### Step 1: Rewrite the expression We start with the expression: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ \] ### Step 2: Use the product-to-sum formula We can apply the product-to-sum formula for two cosines: \[ \cos A \cos B = \frac{1}{2} \left( \cos(A + B) + \cos(A - B) \right) \] Let's first combine \( \cos 55^\circ \) and \( \cos 5^\circ \): \[ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \left( \cos(55^\circ + 5^\circ) + \cos(55^\circ - 5^\circ) \right) \] This simplifies to: \[ \cos 55^\circ \cos 5^\circ = \frac{1}{2} \left( \cos 60^\circ + \cos 50^\circ \right) \] ### Step 3: Substitute back into the expression Now substituting this back into the original expression: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \cos 65^\circ \cdot \frac{1}{2} \left( \cos 60^\circ + \cos 50^\circ \right) \] This can be rewritten as: \[ = \frac{1}{2} \cos 65^\circ \cos 60^\circ + \frac{1}{2} \cos 65^\circ \cos 50^\circ \] ### Step 4: Evaluate \( \cos 60^\circ \) We know that: \[ \cos 60^\circ = \frac{1}{2} \] Thus: \[ \frac{1}{2} \cos 65^\circ \cos 60^\circ = \frac{1}{2} \cdot \frac{1}{2} \cos 65^\circ = \frac{1}{4} \cos 65^\circ \] ### Step 5: Evaluate \( \cos 65^\circ \cos 50^\circ \) Now, we can apply the product-to-sum formula again on \( \cos 65^\circ \cos 50^\circ \): \[ \cos 65^\circ \cos 50^\circ = \frac{1}{2} \left( \cos(65^\circ + 50^\circ) + \cos(65^\circ - 50^\circ) \right) \] This simplifies to: \[ \cos 65^\circ \cos 50^\circ = \frac{1}{2} \left( \cos 115^\circ + \cos 15^\circ \right) \] ### Step 6: Substitute back Substituting this back gives: \[ \frac{1}{2} \cdot \frac{1}{2} \left( \cos 115^\circ + \cos 15^\circ \right) = \frac{1}{4} \left( \cos 115^\circ + \cos 15^\circ \right) \] ### Step 7: Combine the terms Now, combining all the terms: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{4} \cos 65^\circ + \frac{1}{4} \left( \cos 115^\circ + \cos 15^\circ \right) \] ### Step 8: Evaluate \( \cos 115^\circ \) Using the fact that \( \cos 115^\circ = -\cos 65^\circ \): \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{4} \cos 65^\circ + \frac{1}{4} \left( -\cos 65^\circ + \cos 15^\circ \right) \] This simplifies to: \[ = \frac{1}{4} \cos 15^\circ \] ### Step 9: Final Result Thus, the final value is: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ = \frac{1}{4} \cos 15^\circ \]

To find the value of \( \cos 65^\circ \cos 55^\circ \cos 5^\circ \), we can use trigonometric identities and formulas. Here’s a step-by-step solution: ### Step 1: Rewrite the expression We start with the expression: \[ \cos 65^\circ \cos 55^\circ \cos 5^\circ \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos 12^(@)+cos 84^(@)+cos 156^(@)+cos 132^(@)

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 . The value of k is ________.

The value of cos^(-1)(cos10) is

The value of "cos"1^(@)."cos"2^(@)."cos"3^(@)......."cos"179^(@) is

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

Evaluate : (sin 35^(@) cos 55^(@) + cos 35^(@) sin 55^(@))/ (cosec^(2) 10^(@) - tan^(2) 80^(@))

The value of cos 1^@ cos 2^@ cos 3^@... cos 179^@ is

The value of cos0 cos1^(@)cos2^(@) ……………. cos179^(@) cos180^(@) is :

The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is