Home
Class 12
MATHS
If sin A + sin 2A = x and cos A + cos 2A...

If sin A + sin 2A = x and cos A + cos 2A = y, then `(x^(2)+y^(2)) (x^(2)+y^(2)-3)=`

A

2y

B

y

C

3y

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x = \sin A + \sin 2A \) 2. \( y = \cos A + \cos 2A \) We need to find the value of \( (x^2 + y^2)(x^2 + y^2 - 3) \). ### Step 1: Calculate \( x^2 \) and \( y^2 \) First, we square both expressions: \[ x^2 = (\sin A + \sin 2A)^2 = \sin^2 A + \sin^2 2A + 2 \sin A \sin 2A \] \[ y^2 = (\cos A + \cos 2A)^2 = \cos^2 A + \cos^2 2A + 2 \cos A \cos 2A \] ### Step 2: Add \( x^2 \) and \( y^2 \) Now, we add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = (\sin^2 A + \sin^2 2A + 2 \sin A \sin 2A) + (\cos^2 A + \cos^2 2A + 2 \cos A \cos 2A) \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ x^2 + y^2 = (\sin^2 A + \cos^2 A) + (\sin^2 2A + \cos^2 2A) + 2(\sin A \sin 2A + \cos A \cos 2A) \] This simplifies to: \[ x^2 + y^2 = 1 + 1 + 2(\sin A \sin 2A + \cos A \cos 2A) \] ### Step 3: Use the Cosine Addition Formula The expression \( \sin A \sin 2A + \cos A \cos 2A \) can be rewritten using the cosine addition formula: \[ \sin A \sin 2A + \cos A \cos 2A = \cos(2A - A) = \cos A \] Thus, we have: \[ x^2 + y^2 = 2 + 2 \cos A \] ### Step 4: Substitute \( x^2 + y^2 \) Now, we substitute \( x^2 + y^2 \) into the expression we need to evaluate: Let \( z = x^2 + y^2 \), then: \[ z = 2 + 2 \cos A \] We need to find: \[ (z)(z - 3) = z(z - 3) = z^2 - 3z \] ### Step 5: Calculate \( z^2 \) and \( 3z \) First, calculate \( z^2 \): \[ z^2 = (2 + 2 \cos A)^2 = 4(1 + \cos A)^2 = 4(1 + 2 \cos A + \cos^2 A) \] Now, calculate \( 3z \): \[ 3z = 3(2 + 2 \cos A) = 6 + 6 \cos A \] ### Step 6: Final Expression Now, we substitute back: \[ z^2 - 3z = 4(1 + 2 \cos A + \cos^2 A) - (6 + 6 \cos A) \] Simplifying gives: \[ = 4 + 8 \cos A + 4 \cos^2 A - 6 - 6 \cos A \] \[ = -2 + 2 \cos A + 4 \cos^2 A \] ### Step 7: Factor and Simplify This can be factored as: \[ = 2(2 \cos^2 A + \cos A - 1) \] ### Conclusion Thus, the value of \( (x^2 + y^2)(x^2 + y^2 - 3) \) simplifies to: \[ = 2y \] The correct answer is: \[ \boxed{2y} \]

To solve the problem, we start with the given equations: 1. \( x = \sin A + \sin 2A \) 2. \( y = \cos A + \cos 2A \) We need to find the value of \( (x^2 + y^2)(x^2 + y^2 - 3) \). ### Step 1: Calculate \( x^2 \) and \( y^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If sin x + sin y = 1/2 and cos x + cos y = 1 then tan (x + y)

If x cos A + y sin A = m and x sin A - y cos A = n, then prove that : x^(2) + y^(2) = m^(2) + n^(2)

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

If y=a sin x + b cos x , then ((dy)/dx)^2+y^2 is

If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x^(2) + y^(2) + z^(2) = r^(2)

Given that y = 3 cos x + 2 sin x . Show that (d^(2)y)/(dx^(2)) + y = 0

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)