Home
Class 12
MATHS
If sin theta+sin2theta+sin3theta=sin alp...

If `sin theta+sin2theta+sin3theta=sin alpha` and `cos theta+cos 2theta+cos3theta=cos alpha`, then `theta` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta \) given the equations: 1. \( \sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \) 2. \( \cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \) ### Step-by-step Solution: **Step 1: Rewrite the sine equation using the sum-to-product identities.** We can use the identity for the sum of sines: \[ \sin A + \sin B = 2 \sin \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \] Applying this to \( \sin \theta + \sin 3\theta \): \[ \sin \theta + \sin 3\theta = 2 \sin \left( \frac{\theta + 3\theta}{2} \right) \cos \left( \frac{3\theta - \theta}{2} \right) = 2 \sin (2\theta) \cos (\theta) \] Thus, we can rewrite the first equation as: \[ 2 \sin (2\theta) \cos (\theta) + \sin (2\theta) = \sin \alpha \] Factoring out \( \sin (2\theta) \): \[ \sin (2\theta) (2 \cos (\theta) + 1) = \sin \alpha \tag{1} \] **Step 2: Rewrite the cosine equation using the sum-to-product identities.** Using the identity for the sum of cosines: \[ \cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \] Applying this to \( \cos \theta + \cos 3\theta \): \[ \cos \theta + \cos 3\theta = 2 \cos \left( \frac{\theta + 3\theta}{2} \right) \cos \left( \frac{3\theta - \theta}{2} \right) = 2 \cos (2\theta) \cos (\theta) \] Thus, we can rewrite the second equation as: \[ 2 \cos (2\theta) \cos (\theta) + \cos (2\theta) = \cos \alpha \] Factoring out \( \cos (2\theta) \): \[ \cos (2\theta) (2 \cos (\theta) + 1) = \cos \alpha \tag{2} \] **Step 3: Divide Equation (1) by Equation (2).** We have: \[ \frac{\sin (2\theta) (2 \cos (\theta) + 1)}{\cos (2\theta) (2 \cos (\theta) + 1)} = \frac{\sin \alpha}{\cos \alpha} \] Assuming \( 2 \cos (\theta) + 1 \neq 0 \), we can cancel it: \[ \frac{\sin (2\theta)}{\cos (2\theta)} = \tan \alpha \] Thus, \[ \tan (2\theta) = \tan \alpha \] **Step 4: Solve for \( \theta \).** From \( \tan (2\theta) = \tan \alpha \), we can conclude: \[ 2\theta = \alpha + n\pi \quad (n \in \mathbb{Z}) \] Thus, \[ \theta = \frac{\alpha}{2} + \frac{n\pi}{2} \] **Final Answer:** The value of \( \theta \) is: \[ \theta = \frac{\alpha}{2} + \frac{n\pi}{2} \]

To solve the problem, we need to find the value of \( \theta \) given the equations: 1. \( \sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \) 2. \( \cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \) ### Step-by-step Solution: **Step 1: Rewrite the sine equation using the sum-to-product identities.** ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

(sin 3theta+sin5theta+sin7theta+sin9theta)/(cos 3theta+cos 5theta+cos 7theta+cos9theta) is equal to

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

If sintheta-3sin2theta+sin3theta=costheta-3cos2theta+cos3theta , then one of the general value is:

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

(sin5theta+sin2theta-sin theta)/(cos5theta+2cos3theta+2cos^(2)theta+costheta) is equal to

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta