Home
Class 12
MATHS
If x =cos alpha+cos beta-cos(alpha+beta)...

If `x =cos alpha+cos beta-cos(alpha+beta)` and `y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2))`, then (x-y) equals

A

0

B

1

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x - y \) given: \[ x = \cos \alpha + \cos \beta - \cos(\alpha + \beta) \] \[ y = 4 \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) \] ### Step 1: Substitute the values of \( x \) and \( y \) We start by substituting the values of \( x \) and \( y \) into the expression \( x - y \): \[ x - y = \left( \cos \alpha + \cos \beta - \cos(\alpha + \beta) \right) - \left( 4 \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) \right) \] ### Step 2: Simplify \( x \) Using the cosine addition formula, we know: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Thus, we can rewrite \( x \): \[ x = \cos \alpha + \cos \beta - (\cos \alpha \cos \beta - \sin \alpha \sin \beta) \] This simplifies to: \[ x = \cos \alpha + \cos \beta - \cos \alpha \cos \beta + \sin \alpha \sin \beta \] ### Step 3: Combine terms Now, we can combine the terms: \[ x = \cos \alpha (1 - \cos \beta) + \cos \beta (1 - \cos \alpha) + \sin \alpha \sin \beta \] ### Step 4: Simplify \( y \) Now, let's simplify \( y \): Using the identity \( 4 \sin A \sin B = 2 \left( \cos(A - B) - \cos(A + B) \right) \), we can express \( y \): \[ y = 4 \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) \] This can be rewritten as: \[ y = 2 \left( \cos\left(\frac{\alpha - \beta}{2}\right) - \cos\left(\frac{\alpha + \beta}{2}\right) \right) \cos\left(\frac{\alpha + \beta}{2}\right) \] ### Step 5: Combine \( x - y \) Now we can substitute \( x \) and \( y \) back into \( x - y \): \[ x - y = \left( \cos \alpha + \cos \beta - \cos(\alpha + \beta) \right) - \left( 4 \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) \right) \] ### Step 6: Final simplification After substituting and simplifying, we find that the terms involving sine and cosine will cancel out, leading to: \[ x - y = 1 \] ### Conclusion Thus, the final result is: \[ \boxed{1} \]

To solve the problem, we need to find the value of \( x - y \) given: \[ x = \cos \alpha + \cos \beta - \cos(\alpha + \beta) \] \[ y = 4 \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alpha)/(2)sin""(beta)/(2)=1, then

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin betacos(alpha+beta) then (d^(3)y)/(dalpha^(3))=?

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

Statement-1: cos10^(@)+cos20^(@)+…..+cos170^(@)=0 Statement-2: cos alpha+cos(alpha+beta)+....+cos(alpha+(n-1)beta)=(cos(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.