Home
Class 12
MATHS
The smallest positive value of x (in deg...

The smallest positive value of x (in degrees) for whichcos `tanx=(cos5^@ cos 20^@ + cos 35^@ cos 50^@-sin 50^@ sin 20^@ - sin35^@ sin50^@)/(sin5^@ cos 20^@ - sin 35^@ cos 50^@ + cos 5^@ sin 20^@ - cos 35^@ sin 50^@)` is equal to

A

`-(1)/(sqrt(3))`

B

`(1)/(sqrt(3))`

C

`-sqrt(3)`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to simplify the expression on the right side of the equation and then find the smallest positive value of \( x \) such that \( \tan x = \text{expression} \). ### Step-by-step Solution: 1. **Rewrite the Expression**: We have: \[ \tan x = \frac{\cos 5^\circ \cos 20^\circ + \cos 35^\circ \cos 50^\circ - \sin 50^\circ \sin 20^\circ - \sin 35^\circ \sin 50^\circ}{\sin 5^\circ \cos 20^\circ - \sin 35^\circ \cos 50^\circ + \cos 5^\circ \sin 20^\circ - \cos 35^\circ \sin 50^\circ} \] 2. **Use Trigonometric Identities**: - For the numerator: - \( \cos A \cos B - \sin A \sin B = \cos(A + B) \) - Thus, \( \cos 5^\circ \cos 20^\circ + \cos 35^\circ \cos 50^\circ = \cos(5^\circ + 20^\circ) + \cos(35^\circ + 50^\circ) \) - This simplifies to \( \cos 25^\circ + \cos 85^\circ \). - For the second part of the numerator: - \( -\sin A \sin B = -\sin(50^\circ + 20^\circ) \) - Thus, we have: \[ \cos 25^\circ + \cos 85^\circ - \sin 70^\circ \] 3. **Simplifying the Denominator**: - For the denominator: - \( \sin A \cos B + \cos A \sin B = \sin(A + B) \) - Thus, \( \sin 5^\circ \cos 20^\circ + \cos 5^\circ \sin 20^\circ = \sin(5^\circ + 20^\circ) = \sin 25^\circ \). - For the second part of the denominator: - \( -\sin A \cos B + \cos A \sin B = \sin(A - B) \) - Thus, we have: \[ \sin 25^\circ - \sin 85^\circ \] 4. **Combine the Results**: Now we can rewrite the expression: \[ \tan x = \frac{\cos 25^\circ + \cos 85^\circ - \sin 70^\circ}{\sin 25^\circ - \sin 85^\circ} \] 5. **Using Further Identities**: - We can simplify \( \cos 85^\circ \) to \( \sin 5^\circ \) and \( \sin 70^\circ \) to \( \cos 20^\circ \). - The denominator can be simplified using the identity for sine subtraction. 6. **Final Simplification**: After applying the identities and simplifying, we reach: \[ \tan x = -\cot 30^\circ \] Since \( \cot 30^\circ = \sqrt{3} \), we have: \[ \tan x = -\sqrt{3} \] 7. **Finding the Smallest Positive Value of \( x \)**: The angle \( x \) that satisfies \( \tan x = -\sqrt{3} \) is: \[ x = 180^\circ - 60^\circ = 120^\circ \] Therefore, the smallest positive value of \( x \) is: \[ \boxed{120^\circ} \]

To solve the given problem, we need to simplify the expression on the right side of the equation and then find the smallest positive value of \( x \) such that \( \tan x = \text{expression} \). ### Step-by-step Solution: 1. **Rewrite the Expression**: We have: \[ \tan x = \frac{\cos 5^\circ \cos 20^\circ + \cos 35^\circ \cos 50^\circ - \sin 50^\circ \sin 20^\circ - \sin 35^\circ \sin 50^\circ}{\sin 5^\circ \cos 20^\circ - \sin 35^\circ \cos 50^\circ + \cos 5^\circ \sin 20^\circ - \cos 35^\circ \sin 50^\circ} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If cos 25^0 + sin 25^0 = K , then cos 50^0 is equal to

Evaluate cos 40 ^(@) cosec 50 ^(@)+ sin 50 ^(@) sec 40 ^(@)

Evaluate : sin50^(@)cos40^(@)+cos40^(@)+cos50^(@)sin40^(@)

( sin A + sin 3A + sin 5A + sin 7A)/(cos A + cos 3 A + cos 5 A + cos 7A) = tan 4A.

Prove that : (cos 20^0 - sin 20^0)/(cos 20^0 + sin 20^0) = tan 25^0

The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 35^@) simplifies to

Prove that : (cos 10^0 - sin 10^0)/(cos 10^0 + sin 10^0) = tan 35^0

Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@)

((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) is equal to ______.

What is the value of (cos 10 ^(@) + sin 20^(@))/( cos 20^(@) - sin 10 ^(@))?