Home
Class 12
MATHS
Value of the expression (sec1 1^(@)sec1 ...

Value of the expression `(sec1 1^(@)sec1 9^(@)-2cot7 1^(@))/tan11^(@)` is equal to

A

`2 cot 11^(@)`

B

`tan 19^(@)`

C

`2 tan 11^(@)`

D

`(1)/(9)tan 19^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sec 11^\circ \sec 19^\circ - 2 \cot 71^\circ) / \tan 11^\circ\), we will break it down step by step. ### Step 1: Rewrite the trigonometric functions We start with the expression: \[ \frac{\sec 11^\circ \sec 19^\circ - 2 \cot 71^\circ}{\tan 11^\circ} \] Recall that: - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) So we can rewrite the expression as: \[ \frac{\frac{1}{\cos 11^\circ \cos 19^\circ} - 2 \frac{\cos 71^\circ}{\sin 71^\circ}}{\tan 11^\circ} \] ### Step 2: Substitute cotangent Next, we can substitute \(\cot 71^\circ\) using the identity \(\cot(90^\circ - \theta) = \tan \theta\): \[ \cot 71^\circ = \tan(90^\circ - 71^\circ) = \tan 19^\circ \] Thus, we can rewrite the expression as: \[ \frac{\sec 11^\circ \sec 19^\circ - 2 \tan 19^\circ}{\tan 11^\circ} \] ### Step 3: Find a common denominator Now, we need to find a common denominator for the terms in the numerator: \[ \sec 11^\circ \sec 19^\circ = \frac{1}{\cos 11^\circ \cos 19^\circ} \] So the numerator becomes: \[ \frac{1 - 2 \tan 19^\circ \cos 11^\circ \cos 19^\circ}{\cos 11^\circ \cos 19^\circ} \] ### Step 4: Rewrite the numerator Now we can rewrite the numerator: \[ 1 - 2 \tan 19^\circ \cos 11^\circ \cos 19^\circ \] Using the identity \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we have: \[ \tan 19^\circ = \frac{\sin 19^\circ}{\cos 19^\circ} \] Thus, the expression simplifies to: \[ 1 - 2 \frac{\sin 19^\circ \cos 11^\circ}{\cos 19^\circ} \] ### Step 5: Combine and simplify Now, we can combine everything: \[ \frac{1 - 2 \sin 19^\circ \cos 11^\circ}{\cos 11^\circ \cos 19^\circ} \] Now, we can divide this by \(\tan 11^\circ\) which is \(\frac{\sin 11^\circ}{\cos 11^\circ}\): \[ \frac{1 - 2 \sin 19^\circ \cos 11^\circ}{\cos 19^\circ} \cdot \frac{\cos 11^\circ}{\sin 11^\circ} \] ### Step 6: Final simplification Now we can simplify: \[ \frac{1 - 2 \sin 19^\circ \cos 11^\circ}{\sin 11^\circ \cos 19^\circ} \] Using the sine subtraction formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] We can express this as: \[ \frac{\sin 30^\circ - \sin 8^\circ}{\sin 11^\circ \cos 19^\circ} \] Using the sine difference identity, we find: \[ \frac{2 \sin(30^\circ - 8^\circ) \cos(30^\circ + 8^\circ)}{\sin 11^\circ \cos 19^\circ} \] ### Step 7: Evaluate the expression After simplification, we find that: \[ \frac{2 \tan 11^\circ}{\tan 11^\circ} = 2 \] Thus, the value of the expression is: \[ \boxed{2} \]

To solve the expression \((\sec 11^\circ \sec 19^\circ - 2 \cot 71^\circ) / \tan 11^\circ\), we will break it down step by step. ### Step 1: Rewrite the trigonometric functions We start with the expression: \[ \frac{\sec 11^\circ \sec 19^\circ - 2 \cot 71^\circ}{\tan 11^\circ} \] Recall that: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

Find the value of the expression sin[cot^(-1){cos(tan^11)}]

The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x .

The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

the value of sqrt(1-sin^2 11 0^(@))*sec11 0^(@)

The value of cot7(1^0)/2+tan67(1^(@))/2-cot67(1^(@))/2-tan7(1^0)/2 is

The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to