Home
Class 12
MATHS
If sinalpha=1/sqrt5 and sinbeta=3/5 , th...

If `sinalpha=1/sqrt5 and sinbeta=3/5` , then `beta-alpha` lies in

A

`[0,pi//4]`

B

`[pi//2,3pi//4]`

C

`[3pi//4,pi]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find cos(α) Given that \( \sin \alpha = \frac{1}{\sqrt{5}} \), we can use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting the value of \( \sin \alpha \): \[ \left(\frac{1}{\sqrt{5}}\right)^2 + \cos^2 \alpha = 1 \] This simplifies to: \[ \frac{1}{5} + \cos^2 \alpha = 1 \] Now, solving for \( \cos^2 \alpha \): \[ \cos^2 \alpha = 1 - \frac{1}{5} = \frac{4}{5} \] Taking the square root gives: \[ \cos \alpha = \frac{2}{\sqrt{5}} \quad \text{(since α is in the first quadrant)} \] ### Step 2: Find cos(β) Given that \( \sin \beta = \frac{3}{5} \), we again use the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting the value of \( \sin \beta \): \[ \left(\frac{3}{5}\right)^2 + \cos^2 \beta = 1 \] This simplifies to: \[ \frac{9}{25} + \cos^2 \beta = 1 \] Now, solving for \( \cos^2 \beta \): \[ \cos^2 \beta = 1 - \frac{9}{25} = \frac{16}{25} \] Taking the square root gives: \[ \cos \beta = \frac{4}{5} \quad \text{(since β is in the first quadrant)} \] ### Step 3: Calculate sin(β - α) Using the sine difference formula: \[ \sin(\beta - \alpha) = \sin \beta \cos \alpha - \cos \beta \sin \alpha \] Substituting the values we found: \[ \sin(\beta - \alpha) = \left(\frac{3}{5}\right) \left(\frac{2}{\sqrt{5}}\right) - \left(\frac{4}{5}\right) \left(\frac{1}{\sqrt{5}}\right) \] Calculating this gives: \[ \sin(\beta - \alpha) = \frac{6}{5\sqrt{5}} - \frac{4}{5\sqrt{5}} = \frac{2}{5\sqrt{5}} \] ### Step 4: Determine the range of β - α To find the range of \( \beta - \alpha \), we need to evaluate \( \sin(\beta - \alpha) \): \[ \sin(\beta - \alpha) = \frac{2}{5\sqrt{5}} \approx 0.178 \] Since \( \sin x \) is increasing in the interval \( [0, \frac{\pi}{2}] \), we can compare \( \sin(\beta - \alpha) \) with known sine values: - \( \sin(0) = 0 \) - \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \approx 0.707 \) Since \( 0 < 0.178 < 0.707 \), we conclude: \[ 0 < \beta - \alpha < \frac{\pi}{4} \] ### Final Answer Thus, \( \beta - \alpha \) lies in the interval \( (0, \frac{\pi}{4}) \). ---

To solve the problem, we will follow these steps: ### Step 1: Find cos(α) Given that \( \sin \alpha = \frac{1}{\sqrt{5}} \), we can use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If sinalpha+sinbeta=a\ and\ cosalpha-cosbeta=b , then tan((alpha-beta)/2)= a. -a/b b. -b/a c. sqrt(a^2+b^2) d. none of these

If 5 sinalpha=3"sin"(alpha+2beta)!=0, then tan(alpha+beta) is equal to

If sin alpha=4/5 and cos beta =5/13, prove that cos ((alpha-beta)/2)=8/sqrt 65.

sinalpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles). show that alpha+beta = pi/4

If cosalpha=1/(sqrt(2)),sinbeta=1/(sqrt(3)) , show that tan((alpha+beta)/2)cot((alpha-beta)/2)=5+2sqrt6 or 5-2sqrt6

If sinalpha-sinbeta=a and cosalpha+cosbeta=b then write the value of "cos"(alpha+beta) .

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha+cos2beta+2cos(alpha+beta)=0