Home
Class 12
MATHS
If cosalpha+cosbeta=0=sinalpha+sinbeta, ...

If `cosalpha+cosbeta=0=sinalpha+sinbeta,` then `cos2alpha+cos2beta` is equal to `-2"sin"(alpha+beta)` (b) `-2cos(alpha+beta)` `2"sin"(alpha+beta)` (d) `2"cos"(alpha+beta)`

A

`-2sin(alpha+beta)`

B

`-2cos(alpha+beta)`

C

`2sin(alpha+beta)`

D

`2cos(alpha+beta)`

Text Solution

Verified by Experts

The correct Answer is:
C

`cos alpha + cos beta = 0 = sin alpha + sin beta`
Squaring and adding, we get
`2+2 cos (alpha-beta)=0`
`therefore cos (alpha - beta)=-1`
`therefore cos 2alpha + cos 2beta`
`=2 cos (alpha+beta)cos (alpha-beta)`
`=-2 cos (alpha+beta)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=0=s inalpha+s inbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta)dot

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha+cos2beta+2cos(alpha+beta)=0

If cos(alpha+beta)=0 then sin(alpha+2beta)=

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Simplify 2sin^2beta+4cos(alpha+beta)sinalphasinbeta+cos2(alpha+beta)

If sinalpha-sinbeta=a and cosalpha+cosbeta=b then write the value of "cos"(alpha+beta) .