Home
Class 12
MATHS
If alpha and beta are acute such that al...

If `alpha` and `beta` are acute such that `alpha+beta` and `alpha-beta` satisfy the equation `tan^(2)theta-4tan theta+1=0`, then `(alpha, beta`) =

A

`(30^(@), 60^(@))`

B

`(45^(@),45^(@))`

C

`(45^(@),30^(@))`

D

`(60^(@),45^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: ### Step 1: Solve the quadratic equation The given equation is: \[ \tan^2 \theta - 4 \tan \theta + 1 = 0 \] This is a quadratic equation in terms of \(\tan \theta\). We can use the quadratic formula: \[ \tan \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = -4\), and \(c = 1\). ### Step 2: Calculate the discriminant Calculating the discriminant: \[ b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 1 = 16 - 4 = 12 \] ### Step 3: Substitute values into the quadratic formula Now substituting the values into the quadratic formula: \[ \tan \theta = \frac{4 \pm \sqrt{12}}{2} \] \[ \tan \theta = \frac{4 \pm 2\sqrt{3}}{2} \] \[ \tan \theta = 2 \pm \sqrt{3} \] ### Step 4: Identify the angles Thus, we have two values: 1. \(\tan(\alpha + \beta) = 2 + \sqrt{3}\) 2. \(\tan(\alpha - \beta) = 2 - \sqrt{3}\) ### Step 5: Find the angles corresponding to the tangent values We recognize that: \[ \tan(75^\circ) = 2 + \sqrt{3} \] and \[ \tan(15^\circ) = 2 - \sqrt{3} \] ### Step 6: Set up equations for \(\alpha\) and \(\beta\) From the above, we can set up the equations: 1. \(\alpha + \beta = 75^\circ\) (Equation 1) 2. \(\alpha - \beta = 15^\circ\) (Equation 2) ### Step 7: Solve the system of equations Now, we can add Equation 1 and Equation 2: \[ (\alpha + \beta) + (\alpha - \beta) = 75^\circ + 15^\circ \] \[ 2\alpha = 90^\circ \] \[ \alpha = 45^\circ \] Next, substitute \(\alpha\) back into Equation 1 to find \(\beta\): \[ 45^\circ + \beta = 75^\circ \] \[ \beta = 75^\circ - 45^\circ = 30^\circ \] ### Final Answer Thus, the values of \(\alpha\) and \(\beta\) are: \[ (\alpha, \beta) = (45^\circ, 30^\circ) \]

To solve the problem step by step, we start with the given equation: ### Step 1: Solve the quadratic equation The given equation is: \[ \tan^2 \theta - 4 \tan \theta + 1 = 0 \] This is a quadratic equation in terms of \(\tan \theta\). We can use the quadratic formula: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of a quadratic equation such that alpha+beta=2, alpha^4+beta^4=272 , then the quadratic equation is

alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2beta) then tan alpha cot beta =

If cos alpha+cos beta=a*sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).