Home
Class 12
MATHS
Let alpha, beta, gamma be the measures o...

Let `alpha, beta, gamma` be the measures of angle such that `sin alpha+sin beta+sin gamma ge 2`. Then the possible value of `cos alpha + cos beta+cos gamma` is

A

3

B

`2.5`

C

`2.4`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D

`sin alpha + sin beta + sin gamma ge 2`
or `Sigma sin alpha ge 2`
Squaring both sides, we get
`Sigma sin^(2)alpha + 2 Sigma sin alpha sin beta ge 4`
`rArr 3-Sigma cos^(2)alpha + 2Sigma sin alpha sin beta ge 4`
`rArr 2 Sigma sin alpha sin beta ge 1 1+Sigma cos^(2) alpha`
`rArr 2 Sigma (sin alpha sin beta + cos alpha cos beta) ge 1+(Sigma cos alpha)^(2)` (adding `2Sigma cos alpha cos beta` on both sides)
`rArr (cos alpha + cos beta + cos gamma)^(2)+1le 2[cos (alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)]le 6`
`rArr (cos alpha + cos beta + cos gamma)^(2) le 5`
`rArr (cos alpha + cos beta + cos gamma le sqrt(5)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(2) alpha +cos^(2) beta +cos^(2) gamma is _____ .

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If cos alpha + cos beta + cos gamma = 0 and also sin alpha + sin beta + sin gamma= 0, then prove that: cos 3 alpha + cos 3beta + cos 3gamma = 3 cos (alpha + beta + gamma)

If sin alpha, sin beta, sin gamma are in AP and cos alpha, cos beta, cos gamma are in GP , then the value of (cos^(2)alpha+cos^(2)gamma+4 cos alpha cos gamma-2 sin alpha sin gamma-2)/(1-2 sin^(2)beta) , where beta != (pi)/(4) , is equal to

If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 sin gamma y = 0 , then the value of sin 3alpha + 8 sin 3beta + 27 sin 3gamma is

If alphagt0, betagt0, gammagt0, alpha+beta+gamma= pi show that sin^2alpha+sin^2beta-sin^2gamma =

If the direction angles of a line are alpha, beta and gamma respectively, then cos 2 alpha + cos 2 beta + cos 2gamma is equal to

If alpha and beta are acute angles such that alpha+beta=lamda , where constant, find the maximum possible value of the expression sin alpha+sin beta+cos alpha+cos beta .

If alpha +beta + gamma = 2theta then costheta+ cos(theta-alpha)+cos(theta-beta)+ cos(theta-gamma)

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is