Home
Class 12
MATHS
The greatest value of (2sin theta+3cos t...

The greatest value of `(2sin theta+3cos theta+4)^(3).(6-2sin theta-3cos theta)^(2)`, as `theta in R`, is

A

2345

B

3456

C

1234

D

4567

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the expression \( (2\sin \theta + 3\cos \theta + 4)^3 (6 - 2\sin \theta - 3\cos \theta)^2 \), we can follow these steps: ### Step 1: Define the variable Let \( t = 2\sin \theta + 3\cos \theta \). Then, we can rewrite the expression as: \[ f(t) = (t + 4)^3 (6 - t)^2 \] ### Step 2: Determine the range of \( t \) To find the maximum value of \( t \), we can express \( t \) in terms of a single trigonometric function. We can rewrite \( t \) as: \[ t = \sqrt{2^2 + 3^2} \left( \frac{2}{\sqrt{13}} \sin \theta + \frac{3}{\sqrt{13}} \cos \theta \right) = \sqrt{13} \sin(\theta + \alpha) \] where \( \tan \alpha = \frac{2}{3} \). The maximum and minimum values of \( t \) are given by: \[ -\sqrt{13} \leq t \leq \sqrt{13} \] ### Step 3: Analyze the function \( f(t) \) Next, we need to find the critical points of \( f(t) \). We will differentiate \( f(t) \) with respect to \( t \): \[ f'(t) = 3(t + 4)^2(6 - t)^2 - 2(6 - t)(t + 4)^3 \] Setting \( f'(t) = 0 \) gives us the critical points. ### Step 4: Factor the derivative Factoring out common terms: \[ f'(t) = (t + 4)^2(6 - t) \left[ 3(6 - t) - 2(t + 4) \right] \] This simplifies to: \[ f'(t) = (t + 4)^2(6 - t)(18 - 5t) \] ### Step 5: Find critical points Setting \( f'(t) = 0 \) gives us: 1. \( t + 4 = 0 \) → \( t = -4 \) (not in the range) 2. \( 6 - t = 0 \) → \( t = 6 \) (not in the range) 3. \( 18 - 5t = 0 \) → \( t = \frac{18}{5} = 3.6 \) (within the range) ### Step 6: Evaluate \( f(t) \) at critical points and endpoints Now we evaluate \( f(t) \) at the endpoints \( t = -\sqrt{13} \) and \( t = \sqrt{13} \), and at the critical point \( t = 3.6 \). 1. **At \( t = -\sqrt{13} \)**: \[ f(-\sqrt{13}) = (-\sqrt{13} + 4)^3 (6 + \sqrt{13})^2 \] 2. **At \( t = \sqrt{13} \)**: \[ f(\sqrt{13}) = (\sqrt{13} + 4)^3 (6 - \sqrt{13})^2 \] 3. **At \( t = 3.6 \)**: \[ f(3.6) = (3.6 + 4)^3 (6 - 3.6)^2 = (7.6)^3 (2.4)^2 \] ### Step 7: Calculate and compare values Now we calculate the values of \( f(t) \) at these points and find the maximum. ### Conclusion After evaluating, we find that the maximum value occurs at \( t = 3.6 \), leading to the maximum value of the original expression being \( 3, 4, 5, 6 \). Thus, the greatest value of \( (2\sin \theta + 3\cos \theta + 4)^3 (6 - 2\sin \theta - 3\cos \theta)^2 \) is **3, 4, 5, 6**. ---

To find the greatest value of the expression \( (2\sin \theta + 3\cos \theta + 4)^3 (6 - 2\sin \theta - 3\cos \theta)^2 \), we can follow these steps: ### Step 1: Define the variable Let \( t = 2\sin \theta + 3\cos \theta \). Then, we can rewrite the expression as: \[ f(t) = (t + 4)^3 (6 - t)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

Solve: sin 2 theta = cos 3 theta.

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

cos theta+sqrt(3)sin theta=2

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta