Home
Class 12
MATHS
Let x, y, in R satisfy the condition suc...

Let `x, y, in R` satisfy the condition such that sin x sin y + 3 cos y +4 sin y cos `x=sqrt(26)`. The value of `tan^(2)x + cot^(2)y` is equal to

A

`9xx17`

B

205

C

`(1)/(16)+(9)/(17)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sin x \sin y + 3 \cos y + 4 \sin y \cos x = \sqrt{26} \] ### Step 1: Rearranging the Equation We can rearrange the equation by factoring out \(\sin y\): \[ \sin y (\sin x + 4 \cos x) + 3 \cos y = \sqrt{26} \] ### Step 2: Finding Maximum Value To find the maximum value of the expression \(\sin y (\sin x + 4 \cos x) + 3 \cos y\), we can use the fact that the maximum value of \(a \sin x + b \cos x\) is given by \(\sqrt{a^2 + b^2}\). Here, let: - \(a = 4\) - \(b = 3\) Thus, the maximum value of \(4 \cos x + 3 \sin y\) is: \[ \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] ### Step 3: Setting Up the Condition For the maximum value to be achieved, we need: \[ \sin y (\sin x + 4 \cos x) + 3 \cos y = 5 \] Given that this maximum value must equal \(\sqrt{26}\), we can set up the equation: \[ \sqrt{26} \leq 5 \] ### Step 4: Finding Values of \(\tan^2 x\) and \(\cot^2 y\) From the earlier steps, we can deduce the relationships: 1. \(\sin x + 4 \cos x = k\) (where \(k\) is a constant) 2. \(\sin y = \frac{3 \cos y + \sqrt{26}}{\sin x + 4 \cos x}\) Using the maximum values, we can find: \[ \tan^2 x = \left(\frac{\sin x}{\cos x}\right)^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16} \] And for \(\cot^2 y\): \[ \cot^2 y = \left(\frac{\cos y}{\sin y}\right)^2 = \left(\frac{3}{\sqrt{17}}\right)^2 = \frac{9}{17} \] ### Step 5: Combining Results Now we can combine the results: \[ \tan^2 x + \cot^2 y = \frac{1}{16} + \frac{9}{17} \] To add these fractions, we need a common denominator. The least common multiple of \(16\) and \(17\) is \(272\): \[ \tan^2 x + \cot^2 y = \frac{17}{272} + \frac{144}{272} = \frac{161}{272} \] ### Final Result Thus, the value of \(\tan^2 x + \cot^2 y\) is: \[ \frac{161}{272} \]

To solve the problem, we start with the equation given: \[ \sin x \sin y + 3 \cos y + 4 \sin y \cos x = \sqrt{26} \] ### Step 1: Rearranging the Equation We can rearrange the equation by factoring out \(\sin y\): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

The solutions of the system of equations sin x sin y=sqrt(3)/4, cos x cos y= sqrt(3)/4 are

If x+y=3-cos 4 theta and x-y=4sin 2 theta ,the value of sqrtx+sqrty is equal to

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

If sin x + sin y = 1/2 and cos x + cos y = 1 then tan (x + y)

If 2^x = cos(y/2) and a^x = sin y , then sin(y/2) is equal to

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Suppose that 'a' is a non-zero real number for which sin x+sin y=a and cos x + cos y= 2a . The value of cos(x-y) is