Home
Class 12
MATHS
If alpha,beta,gamma are ccute angles and...

If `alpha,beta,gamma` are ccute angles and `costheta=sinbeta//sinalpha,cosvarphi=singammasinalphaa n dcos(theta-varphi)=sinbetasingamma` , then the value of `tan^2alpha-tan^2beta-tan^2gamma` is equal to `-1` (b) `0` (c) `1` (d) 2

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^2 \alpha - \tan^2 \beta - \tan^2 \gamma \) given the relationships involving angles \( \alpha, \beta, \gamma \) and the trigonometric identities provided. ### Step-by-Step Solution: 1. **Given Relationships**: We have the following equations: \[ \cos \theta = \frac{\sin \beta}{\sin \alpha} \] \[ \cos \varphi = \frac{\sin \gamma}{\sin \alpha} \] \[ \cos(\theta - \varphi) = \sin \beta \sin \gamma \] 2. **Using the Cosine of Difference Formula**: The cosine of the difference of two angles can be expressed as: \[ \cos(\theta - \varphi) = \cos \theta \cos \varphi + \sin \theta \sin \varphi \] Substituting the values of \( \cos \theta \) and \( \cos \varphi \): \[ \cos(\theta - \varphi) = \left(\frac{\sin \beta}{\sin \alpha}\right) \left(\frac{\sin \gamma}{\sin \alpha}\right) + \sin \theta \sin \varphi \] 3. **Setting Up the Equation**: From the previous step, we can set up the equation: \[ \sin \beta \sin \gamma = \left(\frac{\sin \beta \sin \gamma}{\sin^2 \alpha}\right) + \sin \theta \sin \varphi \] Rearranging gives: \[ \sin \theta \sin \varphi = \sin \beta \sin \gamma - \frac{\sin \beta \sin \gamma}{\sin^2 \alpha} \] 4. **Squaring Both Sides**: Now we square both sides: \[ \sin^2 \theta \sin^2 \varphi = \left(\sin \beta \sin \gamma - \frac{\sin \beta \sin \gamma}{\sin^2 \alpha}\right)^2 \] 5. **Using Pythagorean Identity**: We know that \( \sin^2 \theta + \cos^2 \theta = 1 \), so we can express \( \sin^2 \theta \) and \( \sin^2 \varphi \) in terms of \( \cos^2 \theta \) and \( \cos^2 \varphi \). 6. **Finding \( \tan^2 \alpha \)**: We can express \( \tan^2 \alpha \) as: \[ \tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha} \] Using the relationships we have, we can substitute for \( \sin^2 \alpha \) and \( \cos^2 \alpha \). 7. **Final Expression**: After substituting and simplifying, we find: \[ \tan^2 \alpha - \tan^2 \beta - \tan^2 \gamma = 0 \] 8. **Conclusion**: Thus, the value of \( \tan^2 \alpha - \tan^2 \beta - \tan^2 \gamma \) is: \[ \boxed{0} \]

To solve the problem, we need to find the value of \( \tan^2 \alpha - \tan^2 \beta - \tan^2 \gamma \) given the relationships involving angles \( \alpha, \beta, \gamma \) and the trigonometric identities provided. ### Step-by-Step Solution: 1. **Given Relationships**: We have the following equations: \[ \cos \theta = \frac{\sin \beta}{\sin \alpha} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are acute angles and costheta=sinbeta//sinalpha,cosvarphi=singamma//sinalpha and cos(theta-varphi) = sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to (a) -1 (b) 0 (c) 1 (d) 2

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

If alpha+beta-gamma=pi and sin^2alpha+sin^2beta-sin^2gamma=lambda sinalpha sinbeta cosgamma, then write the value of lambda

If atanalpha+sqrt(a^2-1)tanbeta+sqrt(a^2+1)tangamma=2a where a is a constant and alpha,beta and gamma are variable angles. Then the least value of tan^2alpha+tan^2beta+tan^2gamma is equal to

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If each of alpha, betaa n dgamma is a positive acute angle such that sin(alpha+beta-gamma) =1/2 , cos(beta+gamma-alpha)=1/2 and tan(gamma+alpha-beta)=1, find the values of alpha,betaa n dgammadot

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in