Home
Class 12
MATHS
The value of (sin(pi-alpha))/(sin alpha-...

The value of `(sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha` is

A

`-2`

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin(\pi - \alpha)}{\sin \alpha - \cos \alpha \cdot \tan\left(\frac{\alpha}{2}\right)} - \cos \alpha\), we will follow these steps: ### Step 1: Simplify \(\sin(\pi - \alpha)\) Using the identity \(\sin(\pi - \theta) = \sin \theta\), we can simplify: \[ \sin(\pi - \alpha) = \sin \alpha \] Thus, the expression becomes: \[ \frac{\sin \alpha}{\sin \alpha - \cos \alpha \cdot \tan\left(\frac{\alpha}{2}\right)} - \cos \alpha \] **Hint:** Remember the sine subtraction identity to simplify \(\sin(\pi - \alpha)\). ### Step 2: Rewrite \(\tan\left(\frac{\alpha}{2}\right)\) We know that: \[ \tan\left(\frac{\alpha}{2}\right) = \frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)} \] Substituting this into the expression gives: \[ \frac{\sin \alpha}{\sin \alpha - \cos \alpha \cdot \frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)}} - \cos \alpha \] **Hint:** Use the definition of tangent in terms of sine and cosine. ### Step 3: Combine the terms in the denominator The denominator now becomes: \[ \sin \alpha - \frac{\cos \alpha \cdot \sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)} \] To combine, we can take a common denominator: \[ \frac{\sin \alpha \cdot \cos\left(\frac{\alpha}{2}\right) - \cos \alpha \cdot \sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)} \] **Hint:** Make sure to factor out the common denominator correctly. ### Step 4: Substitute back into the expression Now the expression becomes: \[ \frac{\sin \alpha \cdot \cos\left(\frac{\alpha}{2}\right)}{\sin \alpha \cdot \cos\left(\frac{\alpha}{2}\right) - \cos \alpha \cdot \sin\left(\frac{\alpha}{2}\right)} - \cos \alpha \] **Hint:** Keep track of the numerator and denominator when substituting. ### Step 5: Simplify using identities Using the identity \(\sin \alpha = 2 \sin\left(\frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right)\), we can rewrite: \[ \frac{2 \sin\left(\frac{\alpha}{2}\right) \cos^2\left(\frac{\alpha}{2}\right)}{2 \sin\left(\frac{\alpha}{2}\right) \cos^2\left(\frac{\alpha}{2}\right) - \cos \alpha \cdot \sin\left(\frac{\alpha}{2}\right)} \] **Hint:** Use double angle formulas to express sine and cosine in terms of half angles. ### Step 6: Factor and simplify The expression simplifies further: \[ \frac{2 \cos^2\left(\frac{\alpha}{2}\right)}{2 \cos^2\left(\frac{\alpha}{2}\right) - \cos \alpha} \] Now, using the identity \( \cos \alpha = 2 \cos^2\left(\frac{\alpha}{2}\right) - 1 \): \[ = \frac{2 \cos^2\left(\frac{\alpha}{2}\right)}{1 + \cos \alpha} \] **Hint:** Remember the relationship between cosine and half angles. ### Step 7: Final simplification After substituting and simplifying, we find that the expression evaluates to: \[ 1 \] Thus, the final answer is: \[ \boxed{1} \]

To solve the expression \(\frac{\sin(\pi - \alpha)}{\sin \alpha - \cos \alpha \cdot \tan\left(\frac{\alpha}{2}\right)} - \cos \alpha\), we will follow these steps: ### Step 1: Simplify \(\sin(\pi - \alpha)\) Using the identity \(\sin(\pi - \theta) = \sin \theta\), we can simplify: \[ \sin(\pi - \alpha) = \sin \alpha \] Thus, the expression becomes: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

The expression (sin alpha+cos alpha)/(cos alpha-sin alpha) tan((pi)/(4)+alpha)+1, alpha in (-(pi)/(4), (pi)/(4)) simplifies to :

Prove that the equation of a line passes through the point (a cos^(3)alpha , a sin^(3)alpha ) and perpendicular to the line x tan alpha+y=a sin alpha is x cos alpha-y sin alpha-a cos 2 alpha .

Let t_(1)=(sin alpha)^(cos alpha), t_(2)=(sin alpha)^(sin alpha), t_(3)=(cosalpha)^(cos alpha), t_(4)=(cosalpha)^(sin alpha) , where alpha in (0, (pi)/(4)) , then which of the following is correct

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given sin alpha = (8)/(17) , tan beta = (5)/(12), alpha and beta in Quadrant I.

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given cos alpha = (-12)/(13) , cot beta = (24)/(7), alpha in Quadrant II, beta in Quadrant I.

Which is equivalent to (sin^2 alpha + cos^2 alpha )/(cos alpha ) ?