Home
Class 12
MATHS
If cosectheta=(p+q)/(p-q), then cot(pi/4...

If `cosectheta=(p+q)/(p-q),` then `cot(pi/4+theta/2)=`

A

`sqrt((p)/(q))`

B

`sqrt((q)/(p))`

C

`sqrt(pq)`

D

pq

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \csc \theta = \frac{p + q}{p - q} \] ### Step 1: Express sin θ in terms of p and q Since \(\csc \theta = \frac{1}{\sin \theta}\), we can rewrite the equation as: \[ \sin \theta = \frac{p - q}{p + q} \] ### Step 2: Use the half-angle identity for sin θ We can use the half-angle identity for sine, which states: \[ \sin \theta = \frac{2 \tan(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} \] Let \( t = \tan(\frac{\theta}{2}) \). Then we have: \[ \frac{2t}{1 + t^2} = \frac{p - q}{p + q} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ 2t(p + q) = (p - q)(1 + t^2) \] Expanding both sides: \[ 2tp + 2tq = p - q + pt^2 - qt^2 \] ### Step 4: Rearranging the equation Rearranging the equation, we get: \[ pt^2 - 2tp + (2tq + q - p) = 0 \] This is a quadratic equation in \( t \). ### Step 5: Use the quadratic formula Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = p \), \( b = -2p \), and \( c = 2q + q - p \): \[ t = \frac{2p \pm \sqrt{(-2p)^2 - 4p(2q + q - p)}}{2p} \] ### Step 6: Simplify the expression This simplifies to: \[ t = \frac{2p \pm \sqrt{4p^2 - 4p(3q - p)}}{2p} \] ### Step 7: Finding cotangent Now, we need to find \( \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) \). Using the formula for cotangent of a sum: \[ \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)} \] Substituting \( t = \tan\left(\frac{\theta}{2}\right) \): \[ \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 - t}{1 + t} \] ### Step 8: Relate to p and q From our earlier work, we found that: \[ \frac{1 + t}{1 - t} = \frac{p}{q} \] Thus: \[ \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\frac{q}{p}} \] ### Final Answer Thus, we conclude that: \[ \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\frac{q}{p}} \]

To solve the problem, we start with the given equation: \[ \csc \theta = \frac{p + q}{p - q} \] ### Step 1: Express sin θ in terms of p and q Since \(\csc \theta = \frac{1}{\sin \theta}\), we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If cosectheta + cottheta=p , then prove that the cos theta=(p^2-1)/(p^2+1)

If cosec theta + cot theta = p prove that cos theta = p2-1 / p2 + 1

If cos p theta+cos q theta=0 , then prove that the different values of theta are in A.P. with common difference 2pi// (p pm q) .

If tan theta = p/q then (p sin theta - q cos theta)/(p sin theta + q cos theta)=

If pcos e ctheta+qcottheta=2 and p^2cos e c^2theta-q^2cot^2theta=5 then the value of sqrt(81 p^(-2)-q^(-2)) is________

If pcos e ctheta+qcottheta=2 and p^2cos e c^2theta-q^2cot^2theta=5 then the value of sqrt(81 p^(-2)- q^(-2)) is________

Let 0 lt alpha lt (pi)/(2) be a fixed angle . If p=(costheta, sin theta) and Q(cos(alpha-theta)) , then Q is obtained from P by

If cosectheta-cottheta=q , then the value of cosectheta is

If : cot theta + cot((pi)/4 + theta) = 2 , then : theta =

If pi lt theta lt 2pi then sqrt ((1+cos theta)/(1-cos theta))= a. cosec theta+cot theta , b. cosec theta - cot theta , c. cot theta-cosec theta , d. -cosectheta - cot theta