Home
Class 12
MATHS
The value of 2(cos^(2)20^(@)+cos^(2)140^...

The value of `2(cos^(2)20^(@)+cos^(2)140^(@)+cos^(2)100^(@))` is

A

`3//2`

B

3

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2(\cos^2 20^\circ + \cos^2 140^\circ + \cos^2 100^\circ)\), we will follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ 2(\cos^2 20^\circ + \cos^2 140^\circ + \cos^2 100^\circ) \] ### Step 2: Use the Identity for Cosine Squared Recall the identity: \[ \cos^2 a = \frac{1 + \cos 2a}{2} \] We can apply this identity to each cosine squared term: \[ \cos^2 20^\circ = \frac{1 + \cos 40^\circ}{2}, \quad \cos^2 140^\circ = \frac{1 + \cos 280^\circ}{2}, \quad \cos^2 100^\circ = \frac{1 + \cos 200^\circ}{2} \] ### Step 3: Substitute the Identities Substituting these into the expression gives: \[ 2\left(\frac{1 + \cos 40^\circ}{2} + \frac{1 + \cos 280^\circ}{2} + \frac{1 + \cos 200^\circ}{2}\right) \] This simplifies to: \[ 2\left(\frac{3 + \cos 40^\circ + \cos 280^\circ + \cos 200^\circ}{2}\right) \] ### Step 4: Simplify the Expression The factor of 2 cancels out: \[ 3 + \cos 40^\circ + \cos 280^\circ + \cos 200^\circ \] ### Step 5: Evaluate Cosine Terms Now, we need to evaluate \( \cos 280^\circ \) and \( \cos 200^\circ \): - \( \cos 280^\circ = \cos(360^\circ - 80^\circ) = \cos 80^\circ \) - \( \cos 200^\circ = -\cos 20^\circ \) (since \(200^\circ\) is in the third quadrant) Thus, we can rewrite the expression as: \[ 3 + \cos 40^\circ + \cos 80^\circ - \cos 20^\circ \] ### Step 6: Use Cosine Addition Identity Using the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] we can combine \( \cos 40^\circ + \cos 80^\circ \): \[ \cos 40^\circ + \cos 80^\circ = 2 \cos\left(\frac{40^\circ + 80^\circ}{2}\right) \cos\left(\frac{40^\circ - 80^\circ}{2}\right) = 2 \cos 60^\circ \cos (-20^\circ) = \cos 20^\circ \] ### Step 7: Substitute Back Substituting this back into our expression gives: \[ 3 + \cos 20^\circ - \cos 20^\circ = 3 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{3} \]

To solve the expression \(2(\cos^2 20^\circ + \cos^2 140^\circ + \cos^2 100^\circ)\), we will follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ 2(\cos^2 20^\circ + \cos^2 140^\circ + \cos^2 100^\circ) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 . The value of k is ________.

Find the value of (4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1) (4cos^(2)81^(@)-1)(4cos^(2)243^(@)-1) .

The value of cos0 cos1^(@)cos2^(@) ……………. cos179^(@) cos180^(@) is :

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

cos 20^(@) + cos 100^(@) + cos 140^(@) = 0

The value of cos^(-1)(cos'(3pi)/(2)) is

The value of cos (2Cos^-1 0.8) is

The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

The value of (cos^3 20^@-cos^3 70^@)/(sin^3 70^@-sin^3 20^@) is (a) 1/2 (b) 1/(sqrt(2)) (c) 1 (d) 2