Home
Class 12
MATHS
If sin 2theta+sin 2phi=1//2 and cos2thet...

If `sin 2theta+sin 2phi=1//2` and `cos2theta+cos 2phi=3//2`, then `cos^(2)(theta-phi)=`

A

`3//8`

B

`5//8`

C

`3//4`

D

`5//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin 2\theta + \sin 2\phi = \frac{1}{2} \) 2. \( \cos 2\theta + \cos 2\phi = \frac{3}{2} \) ### Step 1: Square both equations First, we square both equations to make use of the identities. \[ (\sin 2\theta + \sin 2\phi)^2 = \left(\frac{1}{2}\right)^2 \] This gives us: \[ \sin^2 2\theta + \sin^2 2\phi + 2 \sin 2\theta \sin 2\phi = \frac{1}{4} \] Similarly, for the second equation: \[ (\cos 2\theta + \cos 2\phi)^2 = \left(\frac{3}{2}\right)^2 \] This gives us: \[ \cos^2 2\theta + \cos^2 2\phi + 2 \cos 2\theta \cos 2\phi = \frac{9}{4} \] ### Step 2: Write down the equations Now we have two equations: 1. \( \sin^2 2\theta + \sin^2 2\phi + 2 \sin 2\theta \sin 2\phi = \frac{1}{4} \) (Equation 1) 2. \( \cos^2 2\theta + \cos^2 2\phi + 2 \cos 2\theta \cos 2\phi = \frac{9}{4} \) (Equation 2) ### Step 3: Use the Pythagorean Identity Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can rewrite the equations: From Equation 1: \[ \sin^2 2\theta + \cos^2 2\theta + \sin^2 2\phi + \cos^2 2\phi + 2 \sin 2\theta \sin 2\phi + 2 \cos 2\theta \cos 2\phi = \frac{1}{4} + \frac{9}{4} \] This simplifies to: \[ 1 + 1 + 2(\sin 2\theta \sin 2\phi + \cos 2\theta \cos 2\phi) = \frac{10}{4} \] ### Step 4: Simplify further Now, we can simplify: \[ 2 + 2 \cos(2\theta - 2\phi) = \frac{10}{4} \] This implies: \[ 2 \cos(2\theta - 2\phi) = \frac{10}{4} - 2 \] \[ 2 \cos(2\theta - 2\phi) = \frac{10 - 8}{4} = \frac{2}{4} = \frac{1}{2} \] Dividing both sides by 2: \[ \cos(2\theta - 2\phi) = \frac{1}{4} \] ### Step 5: Find \( \cos^2(\theta - \phi) \) Using the double angle formula, we know: \[ \cos(2x) = 2\cos^2(x) - 1 \] Setting \( x = \theta - \phi \): \[ \cos(2(\theta - \phi)) = 2\cos^2(\theta - \phi) - 1 \] Substituting \( \cos(2(\theta - \phi)) = \frac{1}{4} \): \[ \frac{1}{4} = 2\cos^2(\theta - \phi) - 1 \] ### Step 6: Solve for \( \cos^2(\theta - \phi) \) Rearranging gives: \[ 2\cos^2(\theta - \phi) = \frac{1}{4} + 1 \] \[ 2\cos^2(\theta - \phi) = \frac{1}{4} + \frac{4}{4} = \frac{5}{4} \] Dividing by 2: \[ \cos^2(\theta - \phi) = \frac{5}{8} \] ### Final Answer Thus, the value of \( \cos^2(\theta - \phi) \) is: \[ \boxed{\frac{5}{8}} \]

To solve the problem, we start with the given equations: 1. \( \sin 2\theta + \sin 2\phi = \frac{1}{2} \) 2. \( \cos 2\theta + \cos 2\phi = \frac{3}{2} \) ### Step 1: Square both equations First, we square both equations to make use of the identities. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

(sin (theta+phi) -2 sintheta+ sin (theta-phi))/( cos(theta+phi) -2 costheta+ cos (theta-phi))= tan theta

If sin theta is G.M. of sin phi and cos phi, then prove that cos 2 theta = 2 cos ^(2) ((pi)/(4) + phi).

(sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

If 0 lt theta , phi lt pi and 8 cos theta cos phi cos (theta + phi)+1=0 find theta and phi

If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+cos3theta=cos alpha , then theta is equal to

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) theta ,x^(2) + x sin theta + sin^(2) theta),(x^(2) + x cos theta + cos^(2) theta,3 cos^(2) theta,1 + (sin 2 theta)/(2)),(x^(2) + x sin theta + sin^(2) theta,1 + (sin 2 theta)/(2),3 sin^(2) theta)| = 0

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.