Home
Class 12
MATHS
A and B are positive acute angles satisf...

A and B are positive acute angles satisfying the equations
`3cos^(2)A+2cos^(2)B=4` and `(3sinA)/(sinB)=(2cosB)/(cosA)`, then `A+2B` is equal to (a) `pi/4` (b) `pi/3` (c) `pi/6` (d)`pi/2`

A

`pi//4`

B

`pi//3`

C

`pi//6`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
D

From the given relation, we have
`2 cos^(2) B-1=3(1-cos^(2)A)`
or `cos 2B = 3 sin^(2)A` …(1)
`(3 sin A)/(sin B)=(2 cos B)/(cos A)`
`rArr (3)/(2) sin 2A = sin 2B`
`rArr 3 sin 2A = 2 sin 2B` …(2)
Now cos (A + 2B)
`= cos A cos 2B - sin A sin 2B`
`= cos A(3 sin^(2)A)-sin A.(3)/(2)sin 2A`
`= 3 cos A sin^(2)A-3 sin^(2)A cos A = 0`
`therefore A+2B=90^(@)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1a n d3sin2A-2sin2B=0,t h e nA+2B is equal to pi (b) pi/2 (c) pi/4 (d) pi/6

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

If A+B+C =(3pi)/(2) , then cos2A+cos2B+cos2C is equal to-

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

Prove that: (cosA+cosB)^(2)+(sinA+sinB)^(2)=4cos^(2)(A-B)/2

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The argument of the complex number (i/2-2/i) is equal to (a) pi/2 (b) pi/4 (c) pi/12 (d) (3pi)/4