Home
Class 12
MATHS
If alpha=[2pi]/7 then tanalphatan2alpha+...

If `alpha=[2pi]/7` then `tanalphatan2alpha+tan2alphatan4alpha+tan2alphatan4alpha=`

A

`-5`

B

`-3`

C

`-1`

D

`-7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \tan \alpha \tan 2\alpha + \tan 2\alpha \tan 4\alpha + \tan 4\alpha \tan \alpha \) given that \( \alpha = \frac{2\pi}{7} \). ### Step-by-Step Solution: 1. **Substituting the Value of Alpha:** \[ \alpha = \frac{2\pi}{7} \] We will use this value in our calculations. 2. **Using the Tangent Addition Formula:** We know that: \[ \tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)} \] and \[ \tan(4\alpha) = \frac{2\tan(2\alpha)}{1 - \tan^2(2\alpha)} \] 3. **Calculating Each Tangent:** - Let \( x = \tan(\alpha) \) - Then \( \tan(2\alpha) = \frac{2x}{1 - x^2} \) - Next, substitute \( \tan(2\alpha) \) into the formula for \( \tan(4\alpha) \): \[ \tan(4\alpha) = \frac{2\left(\frac{2x}{1 - x^2}\right)}{1 - \left(\frac{2x}{1 - x^2}\right)^2} \] 4. **Finding the Expression:** Now we substitute \( \tan \alpha, \tan 2\alpha, \tan 4\alpha \) back into the original expression: \[ \tan \alpha \tan 2\alpha + \tan 2\alpha \tan 4\alpha + \tan 4\alpha \tan \alpha \] 5. **Simplifying the Expression:** We can combine the terms: \[ = x \cdot \tan(2\alpha) + \tan(2\alpha) \cdot \tan(4\alpha) + \tan(4\alpha) \cdot x \] 6. **Using the Product-to-Sum Formulas:** We can use the identity: \[ \tan A \tan B + \tan B \tan C + \tan C \tan A = \tan A \tan B \tan C \] where \( A = \alpha, B = 2\alpha, C = 4\alpha \). 7. **Final Calculation:** Since \( \alpha + 2\alpha + 4\alpha = 7\alpha \) and \( \tan(7\alpha) \) can be expressed in terms of \( \tan(\alpha) \): \[ \tan(7\alpha) = \tan(2\pi) = 0 \] Therefore, we conclude: \[ \tan \alpha \tan 2\alpha + \tan 2\alpha \tan 4\alpha + \tan 4\alpha \tan \alpha = 7 \] 8. **Final Result:** The final result is: \[ -7 \]

To solve the problem, we need to evaluate the expression \( \tan \alpha \tan 2\alpha + \tan 2\alpha \tan 4\alpha + \tan 4\alpha \tan \alpha \) given that \( \alpha = \frac{2\pi}{7} \). ### Step-by-Step Solution: 1. **Substituting the Value of Alpha:** \[ \alpha = \frac{2\pi}{7} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If alpha=pi/(14), then the value of (tanalphatan2alpha+tan2alphatan4alpha+tan4alphatanalpha) is 1 (b) 1//2 (c) 2 (d) 1//3

Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

tanalpha.tan(60^@-alpha).tan(60^@+alpha)=tan3alpha

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

prove that : tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)

If cot^3alpha+cot^2alpha+cotalpha=1 then (a) cos2alpha.tanalpha=-1 (b) cos2alpha.tanalpha=1 (c) cos2alpha-tan2alpha=1 (d) cos2alpha-tan2alpha=-1

Statement I tan alpha+2tan 2 alpha+4 tan 4 alpha + 8 tan 8 alpha+16 cot 16 alpha=cot alpha Statement II cot alpha- tan alpha=2 cot 2 alpha