Home
Class 12
MATHS
The value of x satisfying the equation x...

The value of x satisfying the equation `x=sqrt(2+sqrt(2-sqrt(2+x)))` is

A

`2 cos 10^(@)`

B

`2 cos 20^(@)`

C

`2 cos 40^(@)`

D

`2 cos 80^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = \sqrt{2 + \sqrt{2 - \sqrt{2 + x}}} \), we will follow a systematic approach: ### Step 1: Substitute \( x \) Let's start by substituting \( x \) with \( 2 \cos \theta \) for some angle \( \theta \): \[ x = 2 \cos \theta \] ### Step 2: Rewrite the equation Substituting \( x \) in the original equation gives: \[ 2 \cos \theta = \sqrt{2 + \sqrt{2 - \sqrt{2 + 2 \cos \theta}}} \] ### Step 3: Simplify the right-hand side We simplify the right-hand side: \[ \sqrt{2 - \sqrt{2 + 2 \cos \theta}} = \sqrt{2 - \sqrt{2(1 + \cos \theta)}} \] Using the identity \( 1 + \cos \theta = 2 \cos^2(\theta/2) \): \[ \sqrt{2(1 + \cos \theta)} = \sqrt{2 \cdot 2 \cos^2(\theta/2)} = 2 \cos(\theta/2) \] Thus: \[ \sqrt{2 - 2 \cos(\theta/2)} = \sqrt{2(1 - \cos(\theta/2))} = \sqrt{2 \cdot 2 \sin^2(\theta/4)} = 2 \sin(\theta/4) \] ### Step 4: Substitute back Now substituting back, we have: \[ 2 \cos \theta = \sqrt{2 + 2 \sin(\theta/4)} \] ### Step 5: Square both sides Squaring both sides gives: \[ 4 \cos^2 \theta = 2 + 2 \sin(\theta/4) \] This simplifies to: \[ 2 \cos^2 \theta - 1 = \sin(\theta/4) \] ### Step 6: Use trigonometric identities Using the identity \( \cos 2\theta = 2 \cos^2 \theta - 1 \): \[ \cos 2\theta = \sin(\theta/4) \] ### Step 7: Solve for \( \theta \) To solve for \( \theta \), we can use the identity: \[ \cos 2\theta = \sin\left(\frac{\theta}{4}\right) \] This implies: \[ 2\theta = 90^\circ - \frac{\theta}{4} + k \cdot 360^\circ \quad \text{(for some integer \( k \))} \] Solving this gives: \[ 8\theta + \theta = 360^\circ k + 90^\circ \] \[ 9\theta = 360^\circ k + 90^\circ \] \[ \theta = 40^\circ + 40^\circ k \] ### Step 8: Find \( x \) Taking \( k = 0 \): \[ \theta = 40^\circ \] Thus: \[ x = 2 \cos(40^\circ) \] ### Final Answer The value of \( x \) satisfying the equation is: \[ \boxed{2 \cos 40^\circ} \]

To solve the equation \( x = \sqrt{2 + \sqrt{2 - \sqrt{2 + x}}} \), we will follow a systematic approach: ### Step 1: Substitute \( x \) Let's start by substituting \( x \) with \( 2 \cos \theta \) for some angle \( \theta \): \[ x = 2 \cos \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

Sum of the valus of x satisfying the equation sqrt(2x+sqrt(2x+4))=4 is ______.

The value of 'x' satisfying the equation "log"_2"log"_3(sqrtx+sqrt(x-3)) =0 is coprime with : -

Determine the smallest positive value of x which satisfy the equation sqrt(1+sin2x)-sqrt(2)cos3x=0

Determine the smallest positive value of x which satisfy the equation sqrt(1+sin2x)-sqrt(2)cos3x=0

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The sum of the solutions of the equation |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0,(xgt0) is equal to 2k. The value of k is ________

The sum of values of x satisfying the equation (31+8sqrt(15))^(x^2-3)+1=(32+8sqrt(15))^(x^2-3) is (a) 3 (b) 0 (c) 2 (d) none of these