Home
Class 12
MATHS
If 3(cos 2phi-cos2theta)=1-cos2phi cos2t...

If `3(cos 2phi-cos2theta)=1-cos2phi cos2theta`, then `tan theta= k tan phi`, where `theta, phiin (0,(pi)/(2))`, where k =

A

`sqrt(2)`

B

`(1)/(sqrt(2))`

C

`sqrt(3)`

D

`(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3(\cos 2\phi - \cos 2\theta) = 1 - \cos 2\phi \cos 2\theta\) and find the value of \(k\) such that \(\tan \theta = k \tan \phi\), we can follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ 3(\cos 2\phi - \cos 2\theta) = 1 - \cos 2\phi \cos 2\theta \] Rearranging gives: \[ 3\cos 2\phi - 3\cos 2\theta = 1 - \cos 2\phi \cos 2\theta \] This can be rewritten as: \[ 3\cos 2\phi + \cos 2\phi \cos 2\theta = 1 + 3\cos 2\theta \] ### Step 2: Factoring Out \(\cos 2\phi\) Now, factor out \(\cos 2\phi\): \[ \cos 2\phi(3 + \cos 2\theta) = 1 + 3\cos 2\theta \] From this, we can express \(\cos 2\phi\) as: \[ \cos 2\phi = \frac{1 + 3\cos 2\theta}{3 + \cos 2\theta} \] ### Step 3: Applying Componendo and Dividendo Next, we apply the method of componendo and dividendo: \[ \frac{-\cos 2\phi}{1 + \cos 2\phi} = \frac{3\cos 2\theta - 1}{3 + \cos 2\theta + 1} \] This simplifies to: \[ \frac{1 - \cos 2\phi}{1 + \cos 2\phi} = \frac{2 - 2\cos 2\theta}{4 + 4\cos 2\theta} \] ### Step 4: Simplifying the Ratio This can be simplified further: \[ \frac{1 - \cos 2\phi}{1 + \cos 2\phi} = \frac{1 - \cos 2\theta}{2(1 + \cos 2\theta)} \] ### Step 5: Using the Trigonometric Identity Using the identity: \[ \tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta} \] We can write: \[ \frac{1 - \cos 2\phi}{1 + \cos 2\phi} = \frac{1}{2} \tan^2 \theta \] Thus, \[ \tan^2 \phi = \frac{1}{2} \tan^2 \theta \] ### Step 6: Finding the Relationship Between \(\tan \theta\) and \(\tan \phi\) Rearranging gives: \[ \tan^2 \theta = 2 \tan^2 \phi \] Taking the square root: \[ \tan \theta = \sqrt{2} \tan \phi \] Thus, we have: \[ k = \sqrt{2} \] ### Final Answer The value of \(k\) is: \[ \boxed{\sqrt{2}} \]

To solve the equation \(3(\cos 2\phi - \cos 2\theta) = 1 - \cos 2\phi \cos 2\theta\) and find the value of \(k\) such that \(\tan \theta = k \tan \phi\), we can follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ 3(\cos 2\phi - \cos 2\theta) = 1 - \cos 2\phi \cos 2\theta \] Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

If sintheta=5sin(theta+phi) then tan(theta+phi)=

If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

If cos2theta=sin4theta , where 2theta and 4theta are acute angles, find the value of theta .

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is