Home
Class 12
MATHS
The number of integers in the range of 3...

The number of integers in the range of `3 sin^(2)x+3sin x cos x+7cos^(2)x` is

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integers in the range of the expression \(3 \sin^2 x + 3 \sin x \cos x + 7 \cos^2 x\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = 3 \sin^2 x + 3 \sin x \cos x + 7 \cos^2 x \] We can express \(\sin^2 x\) and \(\cos^2 x\) in terms of \(\cos 2x\): \[ \sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2} \] Substituting these into the expression gives: \[ y = 3 \left(\frac{1 - \cos 2x}{2}\right) + 3 \left(\frac{\sin 2x}{2}\right) + 7 \left(\frac{1 + \cos 2x}{2}\right) \] ### Step 2: Simplify the expression Now we simplify: \[ y = \frac{3(1 - \cos 2x) + 3 \sin 2x + 7(1 + \cos 2x)}{2} \] \[ = \frac{3 - 3 \cos 2x + 3 \sin 2x + 7 + 7 \cos 2x}{2} \] \[ = \frac{10 + 4 \cos 2x + 3 \sin 2x}{2} \] \[ = 5 + 2 \cos 2x + \frac{3}{2} \sin 2x \] ### Step 3: Identify the range of the trigonometric part The expression \(2 \cos 2x + \frac{3}{2} \sin 2x\) can be rewritten in the form \(R \sin(2x + \phi)\) where: \[ R = \sqrt{(2)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{4 + \frac{9}{4}} = \sqrt{\frac{25}{4}} = \frac{5}{2} \] Thus, the maximum and minimum values of \(2 \cos 2x + \frac{3}{2} \sin 2x\) are \(\frac{5}{2}\) and \(-\frac{5}{2}\) respectively. ### Step 4: Determine the range of \(y\) Adding 5 to the maximum and minimum values: - Maximum: \(5 + \frac{5}{2} = 5 + 2.5 = 7.5\) - Minimum: \(5 - \frac{5}{2} = 5 - 2.5 = 2.5\) Thus, the range of \(y\) is: \[ [2.5, 7.5] \] ### Step 5: Identify the integers in the range The integers in the range \([2.5, 7.5]\) are: - 3 - 4 - 5 - 6 - 7 ### Conclusion The total number of integers in this range is 5.

To find the number of integers in the range of the expression \(3 \sin^2 x + 3 \sin x \cos x + 7 \cos^2 x\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = 3 \sin^2 x + 3 \sin x \cos x + 7 \cos^2 x \] We can express \(\sin^2 x\) and \(\cos^2 x\) in terms of \(\cos 2x\): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

Solve 7 cos^(2)x+sin x cos x-3=0 .

The range of the function f(x)=3|sin x|-2|cos x| is :

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Solve 2 sin^(3) x=cos x .

The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x, 0 le x le 2pi , is

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is

Find the number of solutions of the equations (sin x - 1)^(3) + (cos x - 1)^(3) + ( sin x)^(3) = ( 2 sin x + cos x - 2)^(3) in ( 0, 2 pi) .

The number of solutions of the equation (2 sin((sin x )/(2)))(cos((sinx)/(2)))(sin(2 "tan" (x)/(2) " cos"^(2) (x)/(2))-3) + 2 = 0 in [0, 2 pi ] is :