Home
Class 12
MATHS
If theta1,theta2,theta3 are the three va...

If `theta_1,theta_2,theta_3` are the three values of `thetain[0,2pi]` for which `tantheta=lambda` then the value of `tan(theta_1)/3tan(theta_2)/3+tan(theta_2)/3tan(theta_3)/3+tan(theta_3)/3tan(theta_1)/3` is equal to

A

`1//3`

B

1

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \frac{\tan(\theta_1)}{3}\tan(\theta_2) + \frac{\tan(\theta_2)}{3}\tan(\theta_3) + \frac{\tan(\theta_3)}{3}\tan(\theta_1) \] given that \(\tan(\theta) = \lambda\) for three angles \(\theta_1, \theta_2, \theta_3\) in the interval \([0, 2\pi]\). ### Step 1: Set up the equation We know that if \(\tan(\theta) = \lambda\), then we can express this in terms of \(\tan(\theta/3)\) using the identity for \(\tan(3\theta)\): \[ \tan(3\theta) = \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \] ### Step 2: Substitute \(\tan(\theta) = \lambda\) Substituting \(\tan(\theta) = \lambda\) into the equation gives us: \[ \tan(3\theta) = \frac{3\lambda - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \] ### Step 3: Rearranging to form a cubic equation Rearranging this equation leads to: \[ 3\tan(\theta) - \tan^3(\theta) = \lambda(1 - 3\tan^2(\theta)) \] This can be rearranged to form a cubic equation in terms of \(\tan(\theta/3)\): \[ \tan^3(\theta/3) - 3\lambda\tan^2(\theta/3) - 3\tan(\theta/3) + \lambda = 0 \] ### Step 4: Identify the roots Let \(x = \tan(\theta/3)\). The roots of this cubic equation are \(x_1 = \tan(\theta_1/3)\), \(x_2 = \tan(\theta_2/3)\), and \(x_3 = \tan(\theta_3/3)\). ### Step 5: Use the sum of products of roots From Vieta's formulas, the sum of the products of the roots taken two at a time is given by: \[ x_1 x_2 + x_2 x_3 + x_3 x_1 = -\frac{c}{a} \] where \(c\) is the coefficient of \(x\) in the cubic equation and \(a\) is the coefficient of \(x^3\). In our case, \(c = -3\) and \(a = 1\), thus: \[ x_1 x_2 + x_2 x_3 + x_3 x_1 = -(-3) = 3 \] ### Step 6: Calculate the desired expression Now, we can substitute back into our original expression: \[ \frac{x_1}{3} x_2 + \frac{x_2}{3} x_3 + \frac{x_3}{3} x_1 = \frac{1}{3}(x_1 x_2 + x_2 x_3 + x_3 x_1) = \frac{1}{3}(3) = 1 \] ### Final Answer Thus, the value of \[ \frac{\tan(\theta_1)}{3}\tan(\theta_2) + \frac{\tan(\theta_2)}{3}\tan(\theta_3) + \frac{\tan(\theta_3)}{3}\tan(\theta_1) = 1 \]

To solve the problem, we need to find the value of \[ \frac{\tan(\theta_1)}{3}\tan(\theta_2) + \frac{\tan(\theta_2)}{3}\tan(\theta_3) + \frac{\tan(\theta_3)}{3}\tan(\theta_1) \] given that \(\tan(\theta) = \lambda\) for three angles \(\theta_1, \theta_2, \theta_3\) in the interval \([0, 2\pi]\). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If theta=pi/(4n) then the value of tanthetatan(2theta)tan(3theta)....tan((2n-1)theta) is

If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal to

tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

Solve: tan^(3)theta-3tantheta=0

Solve : tan6theta=tan3theta

Prove that (tan^2 (2theta)-tan^2 theta)/(1-tan^2 (2theta) tan^2 theta)=tan (3theta)tan theta

If 3tan^(2)theta-2sintheta=0 , then general value of theta is:

Solve: tan5theta=tan3theta

If tan3theta=cottheta , then general value of theta is :