Home
Class 12
MATHS
If u=(1+cos theta)(1+cos 2theta)-sin the...

If `u=(1+cos theta)(1+cos 2theta)-sin theta.sin 2theta, v=sin theta(1+cos 2theta)+sin 2theta(1+cos theta)`, then `u^(2)+v^(2)=`

A

`4(1+cos theta)(1+cos 2theta)`

B

`4(1+sin theta)(1+sin 2theta)`

C

`4(1-cos theta)(1-cos 2theta)`

D

`4(1-sin theta)(1-sin 2theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( u^2 + v^2 \) where: \[ u = (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \] \[ v = \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) \] ### Step 1: Expand \( u \) First, we expand \( u \): \[ u = (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \] Expanding the first part: \[ (1 + \cos \theta)(1 + \cos 2\theta) = 1 + \cos 2\theta + \cos \theta + \cos \theta \cos 2\theta \] Now, using the product-to-sum identities, we can rewrite \( \cos \theta \cos 2\theta \): \[ \cos \theta \cos 2\theta = \frac{1}{2}(\cos(\theta + 2\theta) + \cos(\theta - 2\theta)) = \frac{1}{2}(\cos 3\theta + \cos \theta) \] Thus, \[ u = 1 + \cos \theta + \cos 2\theta + \frac{1}{2}(\cos 3\theta + \cos \theta) - \sin \theta \sin 2\theta \] ### Step 2: Expand \( v \) Now let's expand \( v \): \[ v = \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) \] Expanding this gives: \[ v = \sin \theta + \sin \theta \cos 2\theta + \sin 2\theta + \sin 2\theta \cos \theta \] Using the product-to-sum identities again, we can rewrite \( \sin \theta \cos 2\theta \) and \( \sin 2\theta \cos \theta \): \[ \sin \theta \cos 2\theta = \frac{1}{2}(\sin(\theta + 2\theta) + \sin(\theta - 2\theta)) = \frac{1}{2}(\sin 3\theta - \sin \theta) \] \[ \sin 2\theta \cos \theta = \frac{1}{2}(\sin(2\theta + \theta) + \sin(2\theta - \theta)) = \frac{1}{2}(\sin 3\theta + \sin \theta) \] Thus, we can combine these to get: \[ v = \sin \theta + \frac{1}{2}(\sin 3\theta - \sin \theta) + \sin 2\theta + \frac{1}{2}(\sin 3\theta + \sin \theta) \] ### Step 3: Calculate \( u^2 + v^2 \) Now we need to find \( u^2 + v^2 \): Using the expansions of \( u \) and \( v \), we can calculate \( u^2 \) and \( v^2 \) separately and then add them together. 1. **Calculate \( u^2 \)**: \[ u^2 = \left( (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \right)^2 \] 2. **Calculate \( v^2 \)**: \[ v^2 = \left( \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) \right)^2 \] 3. **Combine \( u^2 + v^2 \)**: After expanding and simplifying, we will find that: \[ u^2 + v^2 = 4(1 + \cos \theta)(1 + \cos 2\theta) \] ### Final Answer Thus, the final result is: \[ u^2 + v^2 = 4(1 + \cos \theta)(1 + \cos 2\theta) \]

To solve the problem, we need to calculate \( u^2 + v^2 \) where: \[ u = (1 + \cos \theta)(1 + \cos 2\theta) - \sin \theta \sin 2\theta \] \[ v = \sin \theta (1 + \cos 2\theta) + \sin 2\theta (1 + \cos \theta) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that : (cos theta)/(1-tan theta) + (sin theta)/(1-cot theta) = sin theta + cos theta

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in